Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov:976:500-12.
doi: 10.1111/j.1749-6632.2002.tb04784.x.

Na/Ca exchange function in intact ventricular myocytes

Affiliations

Na/Ca exchange function in intact ventricular myocytes

Donald M Bers et al. Ann N Y Acad Sci. 2002 Nov.

Abstract

Here, we address three issues in intact ventricular myocytes that specifically relate to the role of Na/Ca exchange (NCX) current under physiological conditions. First, we revisit the issue of NCX stoichiometry in light of some recent findings that the stoichiometry of the NCX may not be fixed at 3Na: 1Ca. We discuss some data that strongly favor the 3:1 stoichiometry, at least under physiological conditions. Second, we address the controversy over the role of allosteric Ca regulation in intact myocytes. We show that outward and inward I(NCX) can be activated dynamically by changing [Ca](i) over the physiological range and that outward I(NCX) can be activated quite rapidly with sarcoplasmic reticulum Ca release. These data are well described using an instantaneous equation for NCX current that includes an allosteric activation factor with K(mCaAct) = 125 nM. Finally, we consider the effect on NCX current of submembrane elevations in [Ca](i) (that are far greater than are measured in the bulk cytoplasm). Taken together with a NCX stoichiometry of 3, these findings have allowed us to make some predictions of the role of I(NCX) during an AP. Our simulations suggest that NCX current is outward for less than approximately 10 ms at the beginning of the action potential.

PubMed Disclaimer

Publication types

LinkOut - more resources