Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Sep;17(9):707-13.
doi: 10.1177/088307380201700913.

Expression of adhesion and extracellular matrix molecules in the developing human brain

Affiliations
Comparative Study

Expression of adhesion and extracellular matrix molecules in the developing human brain

Banu Anlar et al. J Child Neurol. 2002 Sep.

Abstract

Cell adhesion molecules and extracellular matrix molecules have important roles in cell migration and connection. Their developmental expression has not been fully described in humans. In this report, these molecules were examined by immunohistochemistry in frontal tissue samples from 14- to 28-week-old fetuses aborted for obstetric reasons (n = 20) and four fetuses with nervous system abnormalities. Neural cell adhesion molecule (NCAM), tenascin, and laminin were expressed after 17 weeks. Neural cell adhesion molecule was observed in the neuropil, whereas tenascin and laminin also had cellular and vascular expression. Thrombospondin and fibronectin, apparent after 14 weeks, showed a redistribution from periventricular to outer cortical layers after midgestation. N-cadherin and integrin were observed in mid- and late gestation. Maternal or environmental conditions seemed to influence the pattern of expression. Fetuses with nervous system abnormalities had altered expression of several molecules. The descriptive data obtained in this study might constitute a basis for further studies investigating the role of these molecules in developmental abnormalities of the brain.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources