Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jan;28(7):587-95.
doi: 10.1016/s0160-4120(02)00084-3.

Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry

Affiliations

Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry

Gitte Sengeløv et al. Environ Int. 2003 Jan.

Abstract

Resistance to tetracycline, macrolides and streptomycin was measured for a period of 8 months in soil bacteria obtained from farmland treated with pig manure slurry. This was done by spread plating bacteria on selective media (Luria Bertani (LB) medium supplemented with antibiotics). To account for seasonal variations in numbers of soil bacteria, ratios of resistant bacteria divided by total count on nonselective plates were calculated. Soil samples were collected from four different farms and from a control soil on a fifth farm. The control soil was not amended with animal manure. The occurrence of tetracycline-resistant bacteria was elevated after spread of pig manure slurry but declined throughout the sampling period to a level corresponding to the control soil. Higher load of pig manure slurry yielded higher occurrence of tetracycline resistance after spreading; however, the tetracycline resistance declined to normal occurrence defined by the tetracycline resistance occurrence in the control soil. Concentrations of tetracycline in soil and in pig manure slurry were measured using HPLC. No tetracycline exceeding the detection limit was found in soil samples. Manure slurry concentrations of tetracycline for three of the farms were 42, 81 and 698 microg/l, respectively. For streptomycin and macrolides, only minor variations in resistance levels were detected. Results obtained in this study thus indicate that tetracycline resistance levels in soil are temporarily influenced by the addition of pig manure slurry. The results indicate also that increased amount of pig manure slurry amendment may result in increased levels of tetracycline resistance in the soil.

PubMed Disclaimer

Publication types