Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Dec 27:181-182:43-7.
doi: 10.1016/s0300-483x(02)00253-6.

Molecular pathogenesis of human hepatocellular carcinoma

Affiliations
Review

Molecular pathogenesis of human hepatocellular carcinoma

Xin W Wang et al. Toxicology. .

Abstract

Primary hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. However, the viral-chemical etiology as well as molecular mechanisms of HCC pathogenesis remains largely unknown. Recent studies in our laboratory have identified several potential factors that may contribute to the pathogenesis of HCC. Oxidative stress and chronic inflammation have been linked to an increased risk of liver cancer. For example, oxyradical overload diseases such as Wilson disease and hemochromatosis result in the generation of oxygen/nitrogen species that can cause mutations in the p53 tumor suppressor gene. The Hepatitis B virus X gene (HBx), a viral transactivator with oncogenic potentials, has been shown to bind to and inactivate p53-mediated apoptosis. HBx mutants derived from HCC have a diminished ability to act as a transactivator. However, they still retain the ability to bind to and abrogate p53-mediated apoptosis. The comparison of gene expression profiles between HBx-expressing primary human hepatocytes and HBV-infected liver samples by cDNA microarrays indicate a unique alteration of a subset of oncogenes and tumor suppressor genes including p53. Our studies implicate both viral and endogenous chemical processes in the etiology of HCC, and p53 may be a common target for the inactivation during liver carcinogenesis.

PubMed Disclaimer

MeSH terms

LinkOut - more resources