Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr 4;278(14):12344-55.
doi: 10.1074/jbc.M211214200. Epub 2003 Jan 2.

Co-overexpression of Escherichia coli RNA polymerase subunits allows isolation and analysis of mutant enzymes lacking lineage-specific sequence insertions

Affiliations
Free article

Co-overexpression of Escherichia coli RNA polymerase subunits allows isolation and analysis of mutant enzymes lacking lineage-specific sequence insertions

Irina Artsimovitch et al. J Biol Chem. .
Free article

Abstract

The study of mutant enzymes can reveal important details about the fundamental mechanism and regulation of RNA polymerase, the central enzyme of gene expression. However, such studies are complicated by the multisubunit structure of RNA polymerase and by its indispensability for cell growth. Previously, mutant RNA polymerases have been produced by in vitro assembly from isolated subunits or by in vivo assembly upon overexpression of a single mutant subunit. Both approaches can fail if the mutant subunit is toxic or incorrectly folded. Here we describe an alternative strategy, co-overexpression and in vivo assembly of RNA polymerase subunits, and apply this method to characterize the role of sequence insertions present in the Escherichia coli enzyme. We find that co-overexpression of its subunits allows assembly of an RNA polymerase lacking a 188-amino acid insertion in the beta' subunit. Based on experiments with this and other mutant E. coli enzymes with precisely excised sequence insertions, we report that the beta' sequence insertion and, to a lesser extent, an N-terminal beta sequence insertion confer characteristic stability to the open initiation complex, frequency of abortive initiation, and pausing during transcript elongation relative to RNA polymerases, such as that from Bacillus subtilis, that lack the sequence insertions.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources