Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov;66(5 Pt 2):056703.
doi: 10.1103/PhysRevE.66.056703. Epub 2002 Nov 22.

Generalization of the Wang-Landau method for off-lattice simulations

Affiliations

Generalization of the Wang-Landau method for off-lattice simulations

M Scott Shell et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Nov.

Abstract

We present a rigorous derivation for off-lattice implementations of the so-called "random-walk" algorithm recently introduced by Wang and Landau [Phys. Rev. Lett. 86, 2050 (2001)]. Originally developed for discrete systems, the algorithm samples configurations according to their inverse density of states using Monte Carlo moves; the estimate for the density of states is refined at each simulation step and is ultimately used to calculate thermodynamic properties. We present an implementation for atomic systems based on a rigorous separation of kinetic and configurational contributions to the density of states. By constructing a "uniform" ensemble for configurational degrees of freedom-in which all potential energies, volumes, and numbers of particles are equally probable-we establish a framework for the correct implementation of simulation acceptance criteria and calculation of thermodynamic averages in the continuum case. To demonstrate the generality of our approach, we perform sample calculations for the Lennard-Jones fluid using two implementation variants and in both cases find good agreement with established literature values for the vapor-liquid coexistence locus.

PubMed Disclaimer