Protein domains, catalytic activity, and subcellular distribution of neuropathy target esterase in Mammalian cells
- PMID: 12514188
- DOI: 10.1074/jbc.M210743200
Protein domains, catalytic activity, and subcellular distribution of neuropathy target esterase in Mammalian cells
Abstract
Neuropathy target esterase (NTE), the human homologue of a protein required for brain development in Drosophila, has a predicted amino-terminal transmembrane helix (TM), a putative regulatory (R) domain, and a hydrophobic catalytic (C) domain. Here we describe the expression, in COS cells, of green fluorescent protein-tagged constructs of NTE and mutant proteins lacking the TM or the R- or C-domains. Esterase assays and Western blots of particulate and soluble fractions indicated that neither the TM nor R-domain is essential for NTE catalytic activity but that this activity requires membrane association to which the TM, R-, and C-domains all contribute. Experiments involving proteinase treatment revealed that most of the NTE molecule is exposed on the cytoplasmic face of membranes. In cells expressing a moderate level of NTE and all cells expressing DeltaC-NTE, fluorescence was distributed in an endoplasmic reticulum (ER)-like pattern. Cells expressing high levels of NTE showed aberrant distribution of ER marker proteins and accumulation of NTE on the cytoplasmic surface of ER-derived tubuloreticular aggregates. Deformation of the ER was also seen in cells expressing DeltaR-NTE or enzymatically inactive S966A-NTE but not DeltaTM-NTE. The data suggest that NTE is anchored in the ER via its TM, that its R- and C-domains also interact with the cytoplasmic face of the ER, and that overexpression of NTE causes ER aggregation via intermolecular association of its C-domains.
Publication types
MeSH terms
Substances
LinkOut - more resources
Molecular Biology Databases