Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb 15;64(2):65-9.
doi: 10.1002/jbm.b.10485.

Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth

Affiliations

Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth

Malcolm N Cooke et al. J Biomed Mater Res B Appl Biomater. .

Abstract

A novel approach to the manufacture of biodegradable polymeric scaffolds for tissue-engineering utilizing stereolithography (SLA) is presented. SLA is a three-dimensional (3D) printing method that uses an ultraviolet laser to photo-crosslink a liquid polymer substrate. The current generation of SLA devices provide a 3D printing resolution of 0.1 mm. The experiments utilized a biodegradable resin mixture of diethyl fumarate (DEF), poly(propylene fumarate) (PPF), and a photoinitiator, bisacylphosphine oxide (BAPO). The PPF is crosslinked with the use of the SLA's UV laser (325-nm wavelength). An SLA device was retrofitted with a custom fixture build tank enclosing an elevator-driven build table. A 3D prototype model testing the manufacturing control this device provides was created in a computer-aided-design package. The resulting geometric data were used to drive the SLA process, and a DEF/PPF prototype part was successfully manufactured. These scaffolds have application in the tissue engineering of bony substrates.

PubMed Disclaimer

Publication types

LinkOut - more resources