Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jan;44(1):136-43.
doi: 10.1194/jlr.m200367-jlr200.

Regulation of the angiopoietin-like protein 3 gene by LXR

Affiliations
Free article

Regulation of the angiopoietin-like protein 3 gene by LXR

Rebecca Kaplan et al. J Lipid Res. 2003 Jan.
Free article

Abstract

Angiopoietins are members of the vascular endothelial growth factor family. One family member, angiopoietin-like protein 3 (Angptl3), was recently shown to be predominantly expressed in the liver and to play an important role in regulating lipid metabolism. In this study, we show that the Angptl3 gene is a direct target of the liver X receptor (LXR). Mice fed a high cholesterol diet exhibited a significant increase in Angptl3 expression in the liver. Oral administration to mice of T0901317, a synthetic LXR-selective agonist, increases levels of plasma lipids and Angptl3 mRNA in the liver. Treatment of HepG2 cells with LXR selective agonists led to a dose-dependent increase of Angptl3 mRNA. Analysis of the DNA sequence just 5' of the Angptl3 transcriptional start site revealed the presence of several potential transcription factor binding sites, including that for LXR. When transfected into HepG2 cells, the promoter activity of Angptl3 was significantly induced by LXR- or retinoid X receptor-selective agonists. Mutation of the predicted LXR binding site (DR4 element) completely abolished the LXR agonist-mediated activation of the promoter. Together, these studies show that Angptl3 is transcriptionally regulated by LXR, and reveals a novel mechanism by which LXR may regulate lipid metabolism.

PubMed Disclaimer

MeSH terms

LinkOut - more resources