Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Jan;20(1):3-15.
doi: 10.1046/j.1464-5491.2003.00827.x.

The role of the growth hormone-insulin-like growth factor axis in glucose homeostasis

Affiliations
Review

The role of the growth hormone-insulin-like growth factor axis in glucose homeostasis

R I G Holt et al. Diabet Med. 2003 Jan.

Abstract

Homeostatic mechanisms normally maintain the plasma glucose concentration within narrow limits despite major fluctuations in supply and demand. There is increasing evidence that the growth hormone (GH)-insulin-like growth factor (IGF) axis may play an important role in glucose metabolism. GH has potent effects on intermediary metabolism, some of which antagonize the actions of insulin. In contrast, IGF-I has insulin-like actions, which are, in the case of glucose metabolism, opposite to those of GH. There is often deranged glucose metabolism in situations where GH is deficient or in excess. The clinical administration of GH or IGF-I results in altered glucose metabolism and changes in insulin resistance. Despite these observations, the precise role of GH and IGF-I and their interactions with insulin in controlling normal glucose homeostasis are unknown. In diabetes, GH secretion is abnormally increased as a result of reduced portal insulin resulting in impaired hepatic IGF-I generation. Evidence suggests that this may contribute to the development of diabetic microvascular complications. IGF-I 'replacement' in diabetes is under investigation and new methods of delivering IGF-I as a complex with IGFBP-3 offer exciting new prospects.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources