Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003:65:817-49.
doi: 10.1146/annurev.physiol.65.092101.142558. Epub 2002 May 1.

Structure and mechanism of Na,K-ATPase: functional sites and their interactions

Affiliations
Review

Structure and mechanism of Na,K-ATPase: functional sites and their interactions

Peter L Jorgensen et al. Annu Rev Physiol. 2003.

Abstract

The cell membrane Na,K-ATPase is a member of the P-type family of active cation transport proteins. Recently the molecular structure of the related sarcoplasmic reticulum Ca-ATPase in an E1 conformation has been determined at 2.6 A resolution. Furthermore, theoretical models of the Ca-ATPase in E2 conformations are available. As a result of these developments, these structural data have allowed construction of homology models that address the central questions of mechanism of active cation transport by all P-type cation pumps. This review relates recent evidence on functional sites of Na,K-ATPase for the substrate (ATP), the essential cofactor (Mg(2+) ions), and the transported cations (Na(+) and K(+)) to the molecular structure. The essential elements of the Ca-ATPase structure, including 10 transmembrane helices and well-defined N, P, and A cytoplasmic domains, are common to all PII-type pumps such as Na,K-ATPase and H,K-ATPases. However, for Na,K-ATPase and H,K-ATPase, which consist of both alpha- and beta-subunits, there may be some detailed differences in regions of subunit interactions. Mutagenesis, proteolytic cleavage, and transition metal-catalyzed oxidative cleavages are providing much evidence about residues involved in binding of Na(+), K(+), ATP, and Mg(2+) ions and changes accompanying E1-E2 or E1-P-E2-P conformational transitions. We discuss this evidence in relation to N, P, and A cytoplasmic domain interactions, and long-range interactions between the active site and the Na(+) and K(+) sites in the transmembrane segments, for the different steps of the catalytic cycle.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources