Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Jan;16(1):96-113.
doi: 10.1128/CMR.16.1.96-113.2003.

Recent progress in herpes simplex virus immunobiology and vaccine research

Affiliations
Review

Recent progress in herpes simplex virus immunobiology and vaccine research

David M Koelle et al. Clin Microbiol Rev. 2003 Jan.

Abstract

Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) cause prevalent, chronic infections that have serious outcomes in some individuals. Neonatal herpes may occur when the infant traverses the cervix during maternal genital herpes. Genital herpes is a major risk factor for human immunodeficiency virus type 1 transmission. Considerable efforts have been made to design and test vaccines for HSV, focusing on genital infection with HSV-2. Several protein subunit vaccines based on HSV-2 envelope glycoproteins have reached advanced-phase clinical trials. These antigens were chosen because they are the targets of neutralizing-antibody responses and because they elicit cellular immunity. Encouraging results have been reported in studies of treatment of HSV-seronegative women with a vaccine consisting of truncated glycoprotein D of HSV-2 and a novel adjuvant. Because most sexual HSV transmission occurs during asymptomatic shedding, it is important to evaluate the impact of vaccination on HSV-2 infection, clinically apparent genital herpes, and HSV shedding among vaccine recipients who acquire infection. There are several other attractive formats, including subunit vaccines that target cellular immune responses, live attenuated virus strains, and mutant strains that undergo incomplete lytic replication. HSV vaccines have also been evaluated for the immunotherapy of established HSV infection.

PubMed Disclaimer

References

    1. Ahonen, C. L., S. J. Gibson, T. M. Smith, L. K. Pederson, J. M. Lindh, M. A. Tomai, and J. P. Vasilakos. 1999. Dendritic cell maturation and subsequent enhanced T-cell stimulation induced with the novel synthetic immune response modifier R-848. Cell. Immunol. 197:62-72. - PubMed
    1. Alcami, A., and U. H. Koszinowski. 2000. Viral mechanisms of immune evasion. Trends Microbiol. 8:410-418. - PMC - PubMed
    1. Allen, E. M., J. P. Weir, S. Martin, C. Mercadel, and B. T. Rouse. 1990. Role of coexpression of IL-2 and herpes simplex virus proteins in recombinant vaccinia virus vectors on levels of induced immunity. Viral Immunol. 3:207-215. - PubMed
    1. Ankel, H., D. F. Westra, S. Welling-Wester, and P. Lebon. 1998. Induction of interferon-alpha by glycoprotein D of herpes simplex virus: a possible role of chemokine receptors. Virology 251:317-326. - PubMed
    1. Arrode, G., C. Boccaccio, J. Lule, S. Allart, N. Moinard, J. P. Abastado, A. Alam, and C. Davrinche. 2000. Incoming human cytomegalovirus pp65 (UL83) contained in apoptotic infected fibroblasts is cross-presented to CD8+ T cells by dendritic cells. J. Virol. 74:10018-10024. - PMC - PubMed

Publication types

MeSH terms