Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jan;40(1):34-6.
doi: 10.1136/jmg.40.1.34.

In frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome

Affiliations

In frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome

L Faivre et al. J Med Genet. 2003 Jan.

Abstract

Weill-Marchesani syndrome (WMS) is a connective tissue disorder characterised by short stature, brachydactyly, joint stiffness, and characteristic eye anomalies including microspherophakia, ectopia of the lenses, severe myopia, and glaucoma. Both autosomal recessive (AR) and autosomal dominant (AD) modes of inheritance have been described and a gene for AR WMS has recently been mapped to chromosome 19p13.3-p13.2. Here, we report on the exclusion of chromosome 19p13.3-p13.2 in a large AD WMS family and show that, despite clinical homogeneity, AD and AR WMS are genetically heterogeneous entities. Because two AD WMS families were consistent with linkage to chromosome 15q21.1, the fibrillin-1 gene was sequenced and a 24 nt in frame deletion within a latent transforming growth factor-beta1 binding protein (LTBP) motif of the fibrillin-1 gene was found in a AD WMS family (exon 41, 5074_5097del). This in frame deletion cosegregated with the disease and was not found in 186 controls. This study strongly suggests that AD WMS and Marfan syndrome are allelic conditions at the fibrillin-1 locus and adds to the remarkable clinical heterogeneity of type I fibrillinopathies.

PubMed Disclaimer

MeSH terms

Associated data