Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jan 28;42(3):801-10.
doi: 10.1021/bi026375+.

Escherichia coli MutY and Fpg utilize a processive mechanism for target location

Affiliations

Escherichia coli MutY and Fpg utilize a processive mechanism for target location

Anthony W Francis et al. Biochemistry. .

Abstract

MutY and formamidopyrimidine-DNA-glycosylase (Fpg) are base-excision repair (BER) enzymes involved in the 8-oxoguanine repair pathway in Escherichia coli. An impressive feature of these enzymes is the ability to locate 8-oxoguanine lesions among a large excess of undamaged DNA. To provide insight into the mechanism of target location, the ability of these enzyme to utilize a one-dimensional processive search (DNA sliding) or distributive (random diffusion-mediated) mechanism was investigated. Each enzyme was incubated with double-stranded concatemeric polynucleotides containing a site-specific target site at 25-nucleotide (nt) intervals. The products of each reaction were analyzed after further treatment and denaturation. A rapid accumulation of predominantly 25-nt fragments would indicate the utilization of a processive mechanism, whereas oligomeric multiples of 25-nt fragments would form if a distributive mechanism were used. Both Fpg and MutY were found to function processively on concatemers containing 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG).C and G.A mispairs, respectively. An increase in sodium chloride concentration results in the modulation from a processive to distributive mechanism for both enzymes. Interestingly, processive behavior was not observed in the reaction of MutY with concatemers containing OG.A mispairs. A truncated form of MutY (Stop 225) containing only the N-terminal domain was found to behave in a manner consistent with a processive mechanism with both OG.A- and G.A-containing substrates. This suggests that the C-terminal domain of MutY plays an important role in the mechanism by which the enzyme detects OG.A base pairs in DNA.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources