Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jan;27(1):84-91.
doi: 10.1046/j.1525-1594.2003.07187.x.

Investigation on the mechanical properties of contracted collagen gels as a scaffold for tissue engineering

Affiliations

Investigation on the mechanical properties of contracted collagen gels as a scaffold for tissue engineering

Z Feng et al. Artif Organs. 2003 Jan.

Abstract

In this article the mechanical properties of contracted collagen gels were investigated thoroughly by means of uniaxial tensile test. Large type I collagen-Dulbecco's Modified Eagle Medium (DMEM) gels (each was 26 ml in volume, 1.67 mg/ml collagen concentration), each populated with about 2.5 x 106 human fibroblasts, were made in 100 mm diameter plastic dishes precoated with albumin for floating the gels in DMEM. Such identically treated gels were divided into three groups for the mechanical measurements at different culture periods (2, 4, and 10 weeks). Rapid contraction occurred within the first 3 days and then the contraction went slowly in the rest period until it reached about 13% of its original size. The stress-strain curve of the contracted collagen gels demonstrated an exponential behavior at low stress region, followed by linear region, a point of yielding, and finally an ultimate stress point at which the maximum stress was reached. The mechanical strength increased in the first few weeks and then decreased as the culture went on. It is obvious that the collagen fibrils formed and were forced to orientate to the tensile direction after the test. The stress relaxation and cyclic creep phenomena were observed. Based on the morphological analysis of transmission electron microscopy (TEM) of the gels, a nonlinear visco-elastic-plastic constitutive formula was proposed, which was able to reproduce the rheological phenomena of the gels. This experiment shows that the human fibroblasts significantly contracted collagen gels so as to achieve certain mechanical strength, which makes it possible to be a scaffold for tissue engineering. However, a further method to reinforce the mechanical strength by several folds must be considered. Meanwhile, the rheological phenomena should be taken into account in the fabrication and application of the structure.

PubMed Disclaimer

Publication types

LinkOut - more resources