Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb;47(3):715-28.
doi: 10.1046/j.1365-2958.2003.03322.x.

AraC/XylS family members, HilD and HilC, directly activate virulence gene expression independently of HilA in Salmonella typhimurium

Affiliations
Free article

AraC/XylS family members, HilD and HilC, directly activate virulence gene expression independently of HilA in Salmonella typhimurium

Samina Akbar et al. Mol Microbiol. 2003 Feb.
Free article

Abstract

Salmonella typhimurium is a Gram-negative enteric pathogen that can infect intestinal epithelial cells and induce inflammation of the intestinal mucosa. These processes are mediated by a type III secretion system (TTSS), which is encoded on Salmonella pathogenicity island 1 (SPI1). Previous studies showed that four SPI1-encoded transcriptional regulators, HilD, HilC, HilA and InvF, act in an ordered fashion to co-ordinately activate expression of the SPI1 TTSS. HilD and HilC derepress hilA transcription. HilA activates invF as well as SPI1 genes that encode components of the TTS apparatus. InvF then activates genes that encode proteins secreted by the SPI1 TTS apparatus. In this scheme, HilD and HilC indirectly activate expression of the SPI1 TTS apparatus and its secreted substrates by affecting hilA expression. Here, we report that HilD and HilC can also activate expression of a subset of SPI1 genes independently of HilA. Our studies show that HilD and HilC activate transcription of invF from a promoter that is far upstream of its HilA-dependent promoter. This activation is most probably through direct binding of HilD and HilC to sequences upstream and downstream of this alternative HilA-independent promoter. We conclude that HilD and HilC have a second role in SPI1 gene regulation that is separate from their role in co-ordinating expression of the SPI1 TTSS through hilA.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources