Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb;49(2):315-21.
doi: 10.1002/mrm.10342.

In vivo time-resolved quantitative motion mapping of the murine myocardium with phase contrast MRI

Affiliations
Free article

In vivo time-resolved quantitative motion mapping of the murine myocardium with phase contrast MRI

Jörg U G Streif et al. Magn Reson Med. 2003 Feb.
Free article

Abstract

Myocardial motion of healthy mice and mice with myocardial infarction was assessed in vivo by phase contrast (PC) cine MRI. The imaging module was a segmented fast low angle shot (FLASH) sequence with velocity compensation in all three gradient directions. To accomplish additional motion encoding, the spin phase was prepared using bipolar gradient pulses, which resulted in a linear dependence between the voxel velocity and spin phase. This method provided accurate quantification of the velocity magnitude and direction of the murine myocardium at a spatial resolution of 234 microm and a temporal resolution of about 10 ms. The acquisition was EKG-gated and the mice were anesthetized by inhalation of 1.5-4.0 vol.% isoflurane at 1.5 l/min oxygen flow. To validate the MRI measurements, an experiment with a calibrated rotating phantom was performed. Deviations between MR velocity measurements and optical assessment by a light detector were lower than 1.6%. During our study, myocardial motion velocities between 0.4 cm/s and 1.7 cm/s were determined for the healthy murine myocardium across the heart cycle. Areas with myocardial infarction were clearly segmented and showed a motion velocity which was significantly reduced. In conclusion, the method is an accurate technique for the assessment of murine myocardial motion in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources