The antifungal protein from Aspergillus giganteus causes membrane permeabilization
- PMID: 12543664
- PMCID: PMC151754
- DOI: 10.1128/AAC.47.2.588-593.2003
The antifungal protein from Aspergillus giganteus causes membrane permeabilization
Abstract
We investigated the inhibitory effects of the antifungal protein (AFP) from Aspergillus giganteus on the growth of several filamentous fungi. For this purpose, the MICs of AFP were determined and ranged from 0.1 micro g/ml for Fusarium oxysporum to 200 micro g/ml for Aspergillus nidulans. The antifungal activity of AFP was diminished in the presence of cations. We were able to show that incubation of AFP-sensitive fungi with the protein resulted in membrane permeabilization using an assay based on the uptake of the fluorescent dye SYTOX Green. No permeabilization by AFP could be detected at concentrations below the species-specific MIC. Furthermore, AFP-induced permeabilization could readily be detected after 5 min of incubation. Localization experiments with fluorescein isothiocyanate-labeled AFP and immunofluorescence staining with an AFP-specific antibody supported the observation that the protein interacts with membranes. After treatment of AFP-sensitive fungi with AFP, the protein was localized at the plasma membrane, whereas it was mainly detected inside the cells of AFP-resistant fungi. We conclude from these data that the growth-inhibitory effect of AFP is caused by permeabilization of the fungal membranes.
Figures




Similar articles
-
The antifungal protein AFP from Aspergillus giganteus inhibits chitin synthesis in sensitive fungi.Appl Environ Microbiol. 2007 Apr;73(7):2128-34. doi: 10.1128/AEM.02497-06. Epub 2007 Feb 2. Appl Environ Microbiol. 2007. PMID: 17277210 Free PMC article.
-
A Computational Modeling Approach Predicts Interaction of the Antifungal Protein AFP from Aspergillus giganteus with Fungal Membranes via Its γ-Core Motif.mSphere. 2018 Oct 3;3(5):e00377-18. doi: 10.1128/mSphere.00377-18. mSphere. 2018. PMID: 30282755 Free PMC article.
-
New insights into the target site and mode of action of the antifungal protein of Aspergillus giganteus.Res Microbiol. 2005 Jan-Feb;156(1):47-56. doi: 10.1016/j.resmic.2004.08.006. Res Microbiol. 2005. PMID: 15636747
-
A small protein that fights fungi: AFP as a new promising antifungal agent of biotechnological value.Appl Microbiol Biotechnol. 2008 Feb;78(1):17-28. doi: 10.1007/s00253-007-1291-3. Epub 2007 Dec 8. Appl Microbiol Biotechnol. 2008. PMID: 18066545 Review.
-
Molecular bases of antifungal resistance in filamentous fungi.Int J Antimicrob Agents. 2017 Nov;50(5):607-616. doi: 10.1016/j.ijantimicag.2017.06.018. Epub 2017 Jul 10. Int J Antimicrob Agents. 2017. PMID: 28705674 Review.
Cited by
-
Olive (Olea europaea L.) Genetic Transformation: Current Status and Future Prospects.Genes (Basel). 2021 Mar 9;12(3):386. doi: 10.3390/genes12030386. Genes (Basel). 2021. PMID: 33803172 Free PMC article. Review.
-
The sensitivity of yeast mutants to oleic acid implicates the peroxisome and other processes in membrane function.Genetics. 2007 Jan;175(1):77-91. doi: 10.1534/genetics.106.064428. Epub 2006 Dec 6. Genetics. 2007. PMID: 17151231 Free PMC article.
-
Usage of the Heterologous Expression of the Antimicrobial Gene afp From Aspergillus giganteus for Increasing Fungal Resistance in Olive.Front Plant Sci. 2018 May 23;9:680. doi: 10.3389/fpls.2018.00680. eCollection 2018. Front Plant Sci. 2018. PMID: 29875785 Free PMC article.
-
Alkaline pH-induced up-regulation of the afp gene encoding the antifungal protein (AFP) of Aspergillus giganteus is not mediated by the transcription factor PacC: possible involvement of calcineurin.Mol Genet Genomics. 2005 Oct;274(3):295-306. doi: 10.1007/s00438-005-0002-y. Epub 2005 Oct 20. Mol Genet Genomics. 2005. PMID: 16133167
-
Confirmation of the Disulfide Connectivity and Strategies for Chemical Synthesis of the Four-Disulfide-Bond-Stabilized Aspergillus giganteus Antifungal Protein, AFP.J Nat Prod. 2023 Apr 28;86(4):782-790. doi: 10.1021/acs.jnatprod.2c00954. Epub 2023 Feb 27. J Nat Prod. 2023. PMID: 36847642 Free PMC article.
References
-
- Campos-Olivas, R., M. Bruix, J. Santoro, A. Martinez del Pozo, J. Lacadena, J. G. Gavilanes, and M. Rico. 1996. Structural basis for the catalytic mechanism and substrate specificity of the ribonuclease alpha-sarcin. FEBS Lett. 399:163-165. - PubMed
-
- Campos-Olivas, R., M. Bruix, J. Santoro, J. Lacadena, A. Martinez del Pozo, J. G. Gavilanes, and M. Rico. 1995. NMR solution structure of the antifungal protein from Aspergillus giganteus: evidence for cysteine pairing isomerism. Biochemistry 34:3009-3021. - PubMed
-
- Cociancich, S., A. Ghazi, C. Hetru, J. A. Hoffmann, and L. Letellier. 1993. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem. 268:19239-19245. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases