Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar 1;2(3):243-58.
doi: 10.1016/s1568-7864(02)00216-1.

Induction of genome instability by DNA damage in Saccharomyces cerevisiae

Affiliations

Induction of genome instability by DNA damage in Saccharomyces cerevisiae

Kyungjae Myung et al. DNA Repair (Amst). .

Abstract

The accumulation of gross chromosomal rearrangements (GCRs) is a characteristic of many types of cancer cells, although it is unclear what defects cause these rearrangements and how the different types of GCRs observed are formed. In the present study, we have used a Saccharomyces cerevisiae system for measuring GCRs to analyze the ability of a variety of DNA damaging agents to induce GCRs. The two most potent inducers of GCRs observed were methyl methane sulfonate (MMS) and HO-endonuclease-induced double strand breaks (DSBs). Bleomycin, camptothecan and gamma-irradiation induced intermediate levels of GCRs and cisplatin induced very low levels of GCRs whereas N-methyl-NPRIME;-nitro-N-nitrosoguanidine (MNNG) and ethyl methane sulfonate (EMS) primarily induced base substitution mutations. MMS treatment primarily induced rearrangements in which the end of a chromosome was deleted and a new telomere was added (telomere additions) and also induced translocations. Consistent with this GCR spectrum, the formation of MMS-induced GCRs was primarily dependent on telomere maintenance functions and were completely eliminated in mutants that were defective for both telomere maintenance functions and non-homologous end joining (NHEJ). In contrast, HO-endonuclease DSBs induced mostly translocations and interstitial deletions whereas few telomere additions were observed. Genetic analysis indicated that HO DSB-induced GCRs were suppressed by a number of pathways including the DNA damage checkpoints, DSB repair pathways and NHEJ.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources