Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Jan;24(1):40-8.
doi: 10.1177/24.1.1254934.

Cytofluorometric studies on conformation of nucleic acids in situ. I. Restriction of acridine orange binding by chromatin proteins

Cytofluorometric studies on conformation of nucleic acids in situ. I. Restriction of acridine orange binding by chromatin proteins

F Traganos et al. J Histochem Cytochem. 1976 Jan.

Abstract

Binding of the fluorochrome acridine orange (AO) to nucleic acids in situ is studied by automated cytofluorometry in two differentiating cell systems: Friend virus-transformed murine erythroleukemia induced to differentiate by dimethyl sulfoxide, and phytohemagglutinin-stimulated human lymphocytes. The specificity of the stain for deoxyribonucleic acid is discussed on the basis of data obtained by cell treatment with nucleases. Evidence is presented that in the case of Friend leukemia cells, but not phytohemagglutinin-stimulated lymphocytes, a significant change in the number of AO-intercalating sites in DNA occurrs during differentiation. These results suggest that changes in nuclear chromatin occurring during cell differentiation may be correlated, in some but not all systems, with changes in accessibility of DNA in situ to intercalating dyes. The role of divalent cations, especially Mg2+, in the conformation of nuclear chromatin and in modulation of the accessibility of nucleic acids to AO is discussed. The method provides a tool for the study of nucleic acid-protein interaction in situ, and in some cell systems it may be applicable as a marker for recognition of cell transformation, differentiation or neoplasia.

PubMed Disclaimer

LinkOut - more resources