The genome sequence of Clostridium tetani, the causative agent of tetanus disease
- PMID: 12552129
- PMCID: PMC298770
- DOI: 10.1073/pnas.0335853100
The genome sequence of Clostridium tetani, the causative agent of tetanus disease
Abstract
Tetanus disease is one of the most dramatic and globally prevalent diseases of humans and vertebrate animals, and has been reported for over 24 centuries. The manifestation of the disease, spastic paralysis, is caused by the second most poisonous substance known, the tetanus toxin, with a human lethal dose of approximately 1 ng/kg. Fortunately, this disease is successfully controlled through immunization with tetanus toxoid; nevertheless, according to the World Health Organization, an estimated 400,000 cases still occur each year, mainly of neonatal tetanus. The causative agent of tetanus disease is Clostridium tetani, an anaerobic spore-forming bacterium, whose natural habitat is soil, dust, and intestinal tracts of various animals. Here we report the complete genome sequence of toxigenic C. tetani E88, a variant of strain Massachusetts. The genome consists of a 2,799,250-bp chromosome encoding 2,372 ORFs. The tetanus toxin and a collagenase are encoded on a 74,082-bp plasmid, containing 61 ORFs. Additional virulence-related factors could be identified, such as an array of surface-layer and adhesion proteins (35 ORFs), some of them unique to C. tetani. Comparative genomics with the genomes of Clostridium perfringens, the causative agent of gas gangrene, and Clostridium acetobutylicum, a nonpathogenic solvent producer, revealed a remarkable capacity of C. tetani: The organism can rely on an extensive sodium ion bioenergetics. Additional candidate genes involved in the establishment and maintenance of a pathogenic lifestyle of C. tetani are presented.
Figures




Similar articles
-
Insights in metabolism and toxin production from the complete genome sequence of Clostridium tetani.Anaerobe. 2004 Apr;10(2):53-68. doi: 10.1016/j.anaerobe.2003.08.001. Anaerobe. 2004. PMID: 16701501
-
Genomics of Clostridium tetani.Res Microbiol. 2015 May;166(4):326-31. doi: 10.1016/j.resmic.2015.01.002. Epub 2015 Jan 29. Res Microbiol. 2015. PMID: 25638019
-
The population structure of Clostridium tetani deduced from its pan-genome.Sci Rep. 2019 Aug 2;9(1):11220. doi: 10.1038/s41598-019-47551-4. Sci Rep. 2019. PMID: 31375706 Free PMC article.
-
Insights into Clostridium tetani: From genome to bioreactors.Biotechnol Adv. 2022 Jan-Feb;54:107781. doi: 10.1016/j.biotechadv.2021.107781. Epub 2021 May 23. Biotechnol Adv. 2022. PMID: 34029623 Review.
-
Genomics of clostridial pathogens: implication of extrachromosomal elements in pathogenicity.Curr Opin Microbiol. 2005 Oct;8(5):601-5. doi: 10.1016/j.mib.2005.08.006. Curr Opin Microbiol. 2005. PMID: 16125440 Review.
Cited by
-
The changing face of pathogen discovery and surveillance.Nat Rev Microbiol. 2013 Feb;11(2):133-41. doi: 10.1038/nrmicro2949. Epub 2013 Jan 3. Nat Rev Microbiol. 2013. PMID: 23268232 Free PMC article. Review.
-
Transcriptional organization of the Clostridium acetobutylicum genome.Nucleic Acids Res. 2004 Apr 1;32(6):1973-81. doi: 10.1093/nar/gkh509. Print 2004. Nucleic Acids Res. 2004. PMID: 15060177 Free PMC article.
-
Genome sequence of Fusobacterium nucleatum subspecies polymorphum - a genetically tractable fusobacterium.PLoS One. 2007 Aug 1;2(7):e659. doi: 10.1371/journal.pone.0000659. PLoS One. 2007. PMID: 17668047 Free PMC article.
-
Comparative genome analysis of Listeria bacteriophages reveals extensive mosaicism, programmed translational frameshifting, and a novel prophage insertion site.J Bacteriol. 2009 Dec;191(23):7206-15. doi: 10.1128/JB.01041-09. Epub 2009 Sep 25. J Bacteriol. 2009. PMID: 19783628 Free PMC article.
-
Evidence that the algI/algJ gene cassette, required for O acetylation of Pseudomonas aeruginosa alginate, evolved by lateral gene transfer.J Bacteriol. 2004 Jul;186(14):4759-73. doi: 10.1128/JB.186.14.4759-4773.2004. J Bacteriol. 2004. PMID: 15231808 Free PMC article.
References
-
- Tizzoni G, Cattani G. Zentralbl Bakt. 1890;8:69–73.
-
- Montecucco C, Schiavo G. Trends Biochem Sci. 1993;18:324–327. - PubMed
-
- Swaminathan S, Eswaramoorthy S. Nat Struct Biol. 2000;7:693–699. - PubMed
-
- Arnon S S. In: The Clostridia: Molecular Biology and Pathogenesis. Rood J I, McClane B A, Songer J G, Titball R W, editors. San Diego: Academic; 1997. pp. 95–115.
-
- Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, DasGupta B R, Montecucco C. Nature. 1992;359:832–835. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases