Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb 5;125(5):1431-6.
doi: 10.1021/ja0290274.

Toxicity screening by electrochemical detection of DNA damage by metabolites generated in situ in ultrathin DNA-enzyme films

Affiliations

Toxicity screening by electrochemical detection of DNA damage by metabolites generated in situ in ultrathin DNA-enzyme films

Liping Zhou et al. J Am Chem Soc. .

Abstract

Rapid detection of DNA damage could serve as a basis for in vitro genotoxicity screening for new organic compounds. Ultrathin films (20-40 nm) containing myoglobin or cytochrome P450(cam) and DNA grown layer-by-layer on electrodes were activated by hydrogen peroxide, and the enzyme in the film generated metabolite styrene oxide from styrene. This styrene oxide reacted with double stranded (ds)-DNA in the same film, mimicking metabolism and DNA damage in human liver. DNA damage was detected by square wave voltammetry (SWV) by using catalytic oxidation with Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) and by monitoring the binding of Co(bpy)(3)(3+). Damaged DNA reacts more rapidly than intact ds-DNA with Ru(bpy)(3)(3+), giving SWV peaks at approximately 1 V versus SCE that grow larger with reaction time. Co(bpy)(3)(3+) binds more strongly to intact ds-DNA, and its SWV peaks at 0.04 V decreased as DNA was damaged. Little change in SWV signals was found for incubations of DNA/enzyme films with unreactive organic controls or hydrogen peroxide. Capillary electrophoresis and HPLC-MS suggested the formation of styrene oxide adducts of DNA bases under similar reaction conditions in thin films and in solution. The catalytic SWV method was more sensitive than the Co(bpy)(3)(3+) binding assay, providing multiple measurements over a 5 min reaction time.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources