Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb;36(1):51-5.
doi: 10.1016/s0009-9120(02)00407-1.

Relation of aging with oxidative protein damage parameters in the rat skeletal muscle

Affiliations

Relation of aging with oxidative protein damage parameters in the rat skeletal muscle

Ufuk Cakatay et al. Clin Biochem. 2003 Feb.

Abstract

Objectives: An increase in oxidative stress may contribute to the development of oxidative protein damage in the aging rat skeletal muscle. Our aim was to reveal protein carbonyl (PCO), advanced oxidation protein products (AOPP), a novel marker of oxidative stress, and protein thiol (P-SH) levels as markers of protein oxidation, as well as lipid hydroperoxide (LHP) levels as a marker of lipid peroxidation, and relation of nitrotyrosine (NT) levels with these markers in skeletal muscle tissue of young, adult, and old male Wistar rats.

Design and methods: In the present study, we investigated the relation between aging and oxidative protein damage parameters such as PCO, NT, AOPP, and P-SH, as well as oxidative stress parameters such as total thiol, nonprotein thiol, and LHP in the skeletal muscle tissue of young, adult, and old Wistar rats.

Results: PCO and NT levels of old rats were significantly increased compared with those of young and adult rats. Skeletal muscle AOPP levels were significantly increased in old rats compared with those of adult rats. P-SH levels were significantly decreased in old rats compared with those of young rats.

Conclusions: The finding that the increase in PCO levels of young vs. old group was more significant than that of adult vs. old group may suggest that PCO formation is an early specific marker of aging process in skeletal muscle. In addition, increased levels of nitrotyrosine in the skeletal muscle of the old rat group may be a novel specific marker of oxidative protein damage in the aging muscle. The absence of correlation between oxidative protein damage markers mentioned above and LHP levels may indicate that protein oxidation and lipid peroxidation in the aging rat skeletal tissue are two distinct mechanisms.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources