Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Jan;18(1):81-8.
doi: 10.1016/s0928-0987(02)00243-9.

Effects of cholesterol on dye leakage induced by multidrug-resistance modulators from anionic liposomes

Affiliations
Comparative Study

Effects of cholesterol on dye leakage induced by multidrug-resistance modulators from anionic liposomes

Madeleine Castaing et al. Eur J Pharm Sci. 2003 Jan.

Abstract

Multidrug-resistance (MDR) in cancer cells is often associated with marked changes in the membrane cholesterol levels. To assess the cholesterol-dependence of MDR modulator efficiency in terms of the drug-membrane interactions, the ability of 5 MDR-modulators to induce the leakage of Sulphan blue through anionic liposomes was quantified at various mole fractions x(chol) of cholesterol (0-0.42). Depending on the electric charge of the drug, cholesterol modified to a large extent either the permeation dose inducing 50% dye leakage (PD(50)) or the co-operativity (h) of the permeation process. The PD(50) of Triton X-100 (non-ionic) and that of diltiazem and verapamil (mono-basic amines) varied only slightly (0.3 mM) with the cholesterol level, whereas the co-operativity increased by 1.9-2.7. On the reverse, the PD(50) of a thioacridine derivative and mepacrine (di-basic amines) increased by 4.8-7.5 mM in the cholesterol range investigated, whereas the co-operativity (h) increased slightly (0.2-0.7). In the permeation process, the rate-limiting character of the electric charge (z) of the drug is likely to be strengthened by high cholesterol levels. The results provide evidence that in resistant tumours exhibiting high cholesterol levels, the MDR might be reversed by favourable drug-membrane interactions if the modulators are designed in the form of highly lipophilic mono-basic drugs that counteract the effects of cholesterol on the membrane dipolar potential and membrane fluidity.

PubMed Disclaimer

Similar articles

Cited by

Publication types