Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003:122:65-77; discussion 79-88.
doi: 10.1039/b201620f.

The frontiers of time-resolved macromolecular crystallography: movies and chirped X-ray pulses

Affiliations
Review

The frontiers of time-resolved macromolecular crystallography: movies and chirped X-ray pulses

Keith Moffat. Faraday Discuss. 2003.

Abstract

Three important frontiers of ultrafast time-resolved macromolecular crystallography are presented: extension of this technique to other biological systems; further developments in the elucidation of mechanism through the analysis of time-dependent movies to extract the underlying, time-independent, intermediate structures; and enhanced time resolution. The last is intimately linked with the nature of the pump-probe experiment itself, with the sources of random and, particularly, systematic experimental error, and with the factors that contribute to overall time resolution. All experiments to date have utilized the unchirped X-ray pulses that are emitted by synchrotron sources. Chirped pulses offer certain advantages for ultrafast X-ray experiments such as those based on Laue diffraction. An energy-chirped pulse maps photon energy into time; a Laue diffraction experiment maps photon energy into detector space. Hence, a Laue experiment with an energy-chirped pulse maps time into space. The proposed sub-picosecond photon source could provide an excellent source of intense, chirped hard X-rays for such experiments.

PubMed Disclaimer

Publication types

LinkOut - more resources