Automated detection of fundus photographic red lesions in diabetic retinopathy
- PMID: 12556411
- DOI: 10.1167/iovs.02-0418
Automated detection of fundus photographic red lesions in diabetic retinopathy
Abstract
Purpose: To compare a fundus image-analysis algorithm for automated detection of hemorrhages and microaneurysms with visual detection of retinopathy in patients with diabetes.
Methods: Four hundred fundus photographs (35-mm color transparencies) were obtained in 200 eyes of 100 patients with diabetes who were randomly selected from the Welsh Community Diabetic Retinopathy Study. A gold standard reference was defined by classifying each patient as having or not having diabetic retinopathy based on overall visual grading of the digitized transparencies. A single-lesion visual grading was made independently, comprising meticulous outlining of all single lesions in all photographs and used to develop the automated red lesion detection system. A comparison of visual and automated single-lesion detection in replicating the overall visual grading was then performed.
Results: Automated red lesion detection demonstrated a specificity of 71.4% and a resulting sensitivity of 96.7% in detecting diabetic retinopathy when applied at a tentative threshold setting for use in diabetic retinopathy screening. The accuracy of 79% could be raised to 85% by adjustment of a single user-supplied parameter determining the balance between the screening priorities, for which a considerable range of options was demonstrated by the receiver-operating characteristic (area under the curve 90.3%). The agreement of automated lesion detection with overall visual grading (0.659) was comparable to the mean agreement of six ophthalmologists (0.648).
Conclusions: Detection of diabetic retinopathy by automated detection of single fundus lesions can be achieved with a performance comparable to that of experienced ophthalmologists. The results warrant further investigation of automated fundus image analysis as a tool for diabetic retinopathy screening.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical