Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production
- PMID: 12556564
- PMCID: PMC298686
- DOI: 10.1073/pnas.0337684100
Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production
Abstract
Microbial processes for commodity chemicals have focused on reduced products and anaerobic conditions where substrate loss to cell mass and CO(2) are minimal and product yields are high. To facilitate expansion into more oxidized chemicals, Escherichia coli W3110 was genetically engineered for acetate production by using an approach that combines attributes of fermentative and oxidative metabolism (rapid growth, external electron acceptor) into a single biocatalyst. The resulting strain (TC36) converted 333 mM glucose into 572 mM acetate, a product of equivalent oxidation state, in 18 h. With excess glucose, a maximum of 878 mM acetate was produced. Strain TC36 was constructed by sequentially assembling deletions that inactivated oxidative phosphorylation (deltaatpFH), disrupted the cyclic function of the tricarboxylic acid pathway (deltasucA), and eliminated native fermentation pathways (deltafocA-pflB deltafrdBC deltaldhA deltaadhE). These mutations minimized the loss of substrate carbon and the oxygen requirement for redox balance. Although TC36 produces only four ATPs per glucose, this strain grows well in mineral salts medium and has no auxotrophic requirement. Glycolytic flux in TC36 (0.3 micromol.min(-1).mg(-1) protein) was twice that of the parent. Higher flux was attributed to a deletion of membrane-coupling subunits in (F(1)F(0))H(+)-ATP synthase that inactivated ATP synthesis while retaining cytoplasmic F(1)-ATPase activity. The effectiveness of this deletion in stimulating flux provides further evidence for the importance of ATP supply and demand in the regulation of central metabolism. Derivatives of TC36 may prove useful for the commercial production of a variety of commodity chemicals.
Figures





Similar articles
-
Engineering Escherichia coli for efficient conversion of glucose to pyruvate.Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2235-40. doi: 10.1073/pnas.0308171100. Proc Natl Acad Sci U S A. 2004. PMID: 14982993 Free PMC article.
-
Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C.Biotechnol Bioeng. 2008 Dec 1;101(5):881-93. doi: 10.1002/bit.22005. Biotechnol Bioeng. 2008. PMID: 18781696
-
Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli.Appl Microbiol Biotechnol. 2012 May;94(4):959-68. doi: 10.1007/s00253-012-3896-4. Appl Microbiol Biotechnol. 2012. PMID: 22294432
-
Upflow anaerobic sludge blanket reactor--a review.Indian J Environ Health. 2001 Apr;43(2):1-82. Indian J Environ Health. 2001. PMID: 12397675 Review.
-
The fermentation pathways of Escherichia coli.FEMS Microbiol Rev. 1989 Sep;5(3):223-34. doi: 10.1016/0168-6445(89)90033-8. FEMS Microbiol Rev. 1989. PMID: 2698228 Review.
Cited by
-
Engineering Escherichia coli for efficient conversion of glucose to pyruvate.Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2235-40. doi: 10.1073/pnas.0308171100. Proc Natl Acad Sci U S A. 2004. PMID: 14982993 Free PMC article.
-
Engineering Embden-Meyerhof-Parnas Glycolysis to Generate Noncanonical Reducing Power.ACS Catal. 2022 Jul 15;12(14):8582-8592. doi: 10.1021/acscatal.2c01837. Epub 2022 Jul 5. ACS Catal. 2022. PMID: 37622090 Free PMC article.
-
Engineering a homobutanol fermentation pathway in Escherichia coli EG03.J Ind Microbiol Biotechnol. 2012 Aug;39(8):1101-7. doi: 10.1007/s10295-012-1151-8. Epub 2012 Jul 10. J Ind Microbiol Biotechnol. 2012. PMID: 22776992
-
Sub-optimal phenotypes of double-knockout mutants of Escherichia coli depend on the order of gene deletions.Integr Biol (Camb). 2015 Aug;7(8):930-9. doi: 10.1039/c5ib00096c. Integr Biol (Camb). 2015. PMID: 26079398 Free PMC article.
-
Recombinant production of Zymomonas mobilis pyruvate decarboxylase in the haloarchaeon Haloferax volcanii.Archaea. 2005 May;1(5):327-34. doi: 10.1155/2005/325738. Archaea. 2005. PMID: 15876566 Free PMC article.
References
-
- Akesson M, Hagander P, Axelsson J P. Biotechnol Bioeng. 2001;73:223–230. - PubMed
-
- Contiero J, Beatty C, Kumar S, DeSanti C L, Strohl W R, Wolfe A. J Ind Microbiol. 2000;24:421–430.
-
- Aristidou A A, San K, Bennet G N. Biotechnol Prog. 1995;11:475–478. - PubMed
-
- Chotani G, Dodge T, Hsu A, Kumar M, LaDuca R, Trimbur D, Weyler W, Sanford K. Biochim Biophys Acta. 2000;1543:434–455. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous