[Responses of agricultural crops of free-air CO2 enrichment]
- PMID: 12557686
[Responses of agricultural crops of free-air CO2 enrichment]
Abstract
Over the past decade, free-air CO2 enrichment (FACE) experiments have been conducted on several agricultural crops: wheat(Triticum aestivum L.), perennial ryegrass (Lolium perenne), and rice(Oryza sativa L.) which are C3 grasses; sorghum (Sorghum bicolor (L.) Möench), a C4 grass; white clover (Trifolium repens), a C3 legume; potato (Solanum tuberosum L.), a C3 forb with tuber storage; and cotton (Gossypium hirsutum L.) and grape (Vitis vinifera L.) which are C3 woody perennials. Using reports from these experiments, the relative responses of these crops was discussed with regard to photosynthesis, stomatal conductance, canopy temperature, water use, water potential, leaf area index, shoot and root biomass accumulation, agricultural yield, radiation use efficiency, specific leaf area, tissue nitrogen concentration, nitrogen yield, carbohydrate concentration, phenology, soil microbiology, soil respiration, trace gas emissions, and soil carbon sequestration. Generally, the magnitude of these responses varied with the functional type of plant and with the soil nitrogen and water status. As expected, the elevated CO2 increased photosynthesis and biomass production and yield substantially in C3 species, but little in C4, and it decreased stomatal conductance and transpiration in both C3 and C4 species and greatly improved water-use efficiency in all the crops. Growth stimulations were as large or larger under water-stress compared to well-watered conditions. Growth stimulations of non-legumes were reduced at low soil nitrogen, whereas elevated CO2 strongly stimulated the growth of the clover legume both at ample and under low N conditions. Roots were generally stimulated more than shoots. Woody perennials had larger growth responses to elevated CO2, while at the same time, their reductions in stomatal conductance were smaller. Tissue nitrogen concentrations went down while carbohydrate and some other carbon-based compounds went up due to elevated CO2, with leaves and foliage affected more than other organs. Phenology was accelerated slightly in most but not all species. Elevated CO2 affected some soil microbes greatly but not others, yet overall activity appears to be stimulated. Detection of statistically significant changes in soil organic carbon in any one study was impossible, yet combining results from several sites and years, it appears that elevated CO2 did increase sequestration of soil carbon. Whenever possible, comparisons were made between the FACE results and those from prior chamber-based experiments reviewed in the literature. Over all the data and parameters considered in this review, there are only two parameters for which the FACE- and chamber-based data appear to be inconsistent. One is that elevated CO2 from FACE appears to reduce stomatal conductance about one and a half times more than observed in prior chamber experiments. Similarly, elevated CO2 appears to have stimulated root growth relatively more than shoot growth under FACE conditions compared to chamber conditions. Nevertheless, for the most part, the FACE- and chamber-based results have been consistent, which gives confidence that conclusions drawn from both types of data are accurate. However, the more realistic FACE environment and the larger plot size have enabled more extensive robust multidisciplinary data sets to be obtained under conditions representative of open fields in the future high-CO2 world.
Similar articles
-
Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown with free-air CO2 enrichment.Plant Biol (Stuttg). 2011 Mar;13(2):258-69. doi: 10.1111/j.1438-8677.2010.00360.x. Plant Biol (Stuttg). 2011. PMID: 21309972
-
Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments.Glob Chang Biol. 2016 Feb;22(2):856-74. doi: 10.1111/gcb.13065. Epub 2015 Nov 20. Glob Chang Biol. 2016. PMID: 26279285
-
Do all leaf photosynthesis parameters of rice acclimate to elevated CO2 , elevated temperature, and their combination, in FACE environments?Glob Chang Biol. 2018 Apr;24(4):1685-1707. doi: 10.1111/gcb.13961. Epub 2017 Nov 27. Glob Chang Biol. 2018. PMID: 29076597
-
Crop responses to elevated CO2 and interactions with H2O, N, and temperature.Curr Opin Plant Biol. 2016 Jun;31:36-43. doi: 10.1016/j.pbi.2016.03.006. Epub 2016 Apr 1. Curr Opin Plant Biol. 2016. PMID: 27043481 Review.
-
[Responses of rice growth and development to free-air CO2 enrichment (FACE): A research review].Ying Yong Sheng Tai Xue Bao. 2006 Jul;17(7):1331-7. Ying Yong Sheng Tai Xue Bao. 2006. PMID: 17044517 Review. Chinese.
Cited by
-
Implications of High Temperature and Elevated CO2 on Flowering Time in Plants.Front Plant Sci. 2016 Jun 27;7:913. doi: 10.3389/fpls.2016.00913. eCollection 2016. Front Plant Sci. 2016. PMID: 27446143 Free PMC article. Review.
-
Effects of Climate Change Scenarios on Growth, Flowering Characteristics, and Honey Production Potential of Pseudolysimachion rotundum var. subintegrum.Plants (Basel). 2025 May 28;14(11):1647. doi: 10.3390/plants14111647. Plants (Basel). 2025. PMID: 40508322 Free PMC article.
-
Elevated [CO2] negatively impacts C4 photosynthesis under heat and water stress without penalizing biomass.J Exp Bot. 2023 Apr 27;74(9):2875-2890. doi: 10.1093/jxb/erad063. J Exp Bot. 2023. PMID: 36800252 Free PMC article.
-
Effect of Elevated CO2 Concentration on the Disease Severity of Compatible and Incompatible Interactions of Brassica napus-Leptosphaeria maculans Pathosystem.Plants (Basel). 2019 Nov 8;8(11):484. doi: 10.3390/plants8110484. Plants (Basel). 2019. PMID: 31717434 Free PMC article.
-
A High-Yielding Rice Cultivar "Takanari" Shows No N Constraints on CO2 Fertilization.Front Plant Sci. 2019 Apr 5;10:361. doi: 10.3389/fpls.2019.00361. eCollection 2019. Front Plant Sci. 2019. PMID: 31024578 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Research Materials
Miscellaneous