Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb;84(3):610-7.
doi: 10.1046/j.1471-4159.2003.01558.x.

Polyamine transport, accumulation, and release in brain

Affiliations

Polyamine transport, accumulation, and release in brain

Takashi Masuko et al. J Neurochem. 2003 Feb.

Abstract

Cycling of polyamines (spermine and spermidine) in the brain was examined by measuring polyamine transport in synaptic vesicles, synaptosomes and glial cells, and the release of spermine from hippocampal slices. It was found that membrane potential-dependent polyamine transport systems exist in synaptosomes and glial cells, and a proton gradient-dependent polyamine transport system exists in synaptic vesicles. The glial cell transporter had high affinities for both spermine and spermidine, whereas the transporters in synaptosomes and synaptic vesicles had a much higher affinity for spermine than for spermidine. Polyamine transport by synaptosomes was inhibited by putrescine, agmatine, histidine, and histamine. Transport by glial cells was also inhibited by these four compounds and additionally by norepinephrine. On the other hand, polyamine transport by synaptic vesicles was inhibited only by putrescine and histamine. These results suggest that the polyamine transporters present in glial cells, neurons, and synaptic vesicles each have different properties and are, presumably, different molecular entities. Spermine was found to be accumulated in synaptic vesicles and was released from rat hippocampal slices by depolarization using a high concentration of KCl. Polyamines, in particular spermine, may function as neuromodulators in the brain.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources