Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003;5(1):1-7.
doi: 10.1186/bcr460. Epub 2002 Aug 14.

The role of the ubiquitination-proteasome pathway in breast cancer: applying drugs that affect the ubiquitin-proteasome pathway to the therapy of breast cancer

Affiliations
Review

The role of the ubiquitination-proteasome pathway in breast cancer: applying drugs that affect the ubiquitin-proteasome pathway to the therapy of breast cancer

Robert Z Orlowski et al. Breast Cancer Res. 2003.

Abstract

The ubiquitin-proteasome pathway is responsible for most eukaryotic intracellular protein degradation. This pathway has been validated as a target for antineoplastic therapy using both in vitro and preclinical models of human malignancies, and is influenced as part of the mechanism of action of certain chemotherapeutic agents. Drugs whose primary action involves modulation of ubiquitin-proteasome activity, most notably the proteasome inhibitor PS-341, are currently being evaluated in clinical trials, and have already been found to have significant antitumor efficacy. On the basis of the known mechanisms by which these agents work, and the available clinical data, they would seem to be well suited for the treatment of breast neoplasms. Such drugs, alone and especially in combination with current chemotherapeutics, may well represent important advances in the therapy of patients with breast cancer.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Protein degradation through the ubiquitin (Ub)-proteasome pathway. Most proteins that are destined for degradation through the Ub-proteasome pathway are first subjected to polyubiquitination. This is accomplished in several stages. (a) The E1 Ub-activating enzyme, in an ATP-dependent reaction, forms an activated complex with Ub and transfers it to the E2 Ub-conjugating protein. (b) The E2 Ub-conjugating protein then transfers Ub to an E3 Ub-ligase protein, which has formed a complex with the target protein. In some cases an E3 Ub-ligase may not be necessary. (c) After several cycles of ubiquitination, the polyubiquitinated target protein is recognized by the proteasomal cap proteins (shaded gray and labeled 19 S cap) through its ubiquitin moieties, which are cleaved off by isopeptidases and recycled. (d) In an ATP-dependent fashion the protein is then unwound and fed into the 20S core through an interior channel, where it is exposed to the active proteolytic enzymes (shaded black). (e) Oligopeptide digestion products (OP) are then released and degraded further to amino acids by oligopeptidases. Some proteins may be subject to proteasomal degradation without the need for prior ubiquitination. Please note that this schematic diagram does not represent the various components to scale. Interested readers are referred to several excellent recent reviews with more detailed descriptions of this pathway [43,44].
Figure 2
Figure 2
The combination of PS-341 and Doxil® induces enhanced apoptosis in vivo. The impact of vehicle, PS-341 alone, Doxil® alone, or the combination, was studied in a murine xenograft model of human breast cancer established using BT-474 breast carcinoma cells. Apoptosis was evaluated in tumor sections 24 hours after the indicated treatments by detection of single stranded DNA fragmentation using the murine monoclonal antibody Mab 3299 [45] (Chemicon International, Temecula, CA, USA). Single stranded DNA associated with programmed cell death (red) is shown, along with total nuclear DNA (blue), the latter detected using 4,6-diamidino-2-phenylindole (Vector Laboratories, Burlingame, CA, USA). Slides were visualized using an ultraviolet Zeiss Axioplan fluorescence microscope (Carl Zeiss Optical, Inc., Chester, VA, USA). Separate photographs were taken with appropriate filters for blue nuclear staining and red single-stranded-DNA staining, overlayed using Adobe Photoshop software, and displayed as a fusion image at 10 × magnification.

References

    1. Orlowski RZ, Eswara JR, Lafond-Walker A, Grever MR, Orlowski M, Dang CV. Tumor growth inhibition induced in a murine model of human Burkitt's lymphoma by a proteasome inhibitor. Cancer Res. 1998;58:4342–4348. - PubMed
    1. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 1999;59:2615–2622. - PubMed
    1. Orlowski RZ, Stinchcombe TE, Mitchell BS, Shea TC, Baldwin AS, Stahl S, Adams J, Esseltine DL, Elliott PJ, Pien CS, Guerciolini R, Anderson JK, Depcik-Smith ND, Bhagat R, Lehman MJ, Novick SC, O'Connor OA, Soignet SL. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol. 2002. - PubMed
    1. Kiyomiya K, Matsuo S, Kurebe M. Mechanism of specific nuclear transport of adriamycin: the mode of nuclear translocation of adriamycin-proteasome complex. Cancer Res. 2001;61:2467–2471. - PubMed
    1. Yoshida H, Kitamura K, Tanaka K, Omura S, Miyazaki T, Hachiya T, Ohno R, Naoe T. Accelerated degradation of PML-retinoic acid receptor α (PML-RARA) oncoprotein by all-trans-retinoic acid in acute promyelocytic leukemia: possible role of the proteasome pathway. Cancer Res. 1996;56:2945–2948. - PubMed

Publication types

MeSH terms