Effect of chemically activated fine muscle afferents on spinal recurrent inhibition in humans
- PMID: 12559235
 - DOI: 10.1016/s1388-2457(02)00334-6
 
Effect of chemically activated fine muscle afferents on spinal recurrent inhibition in humans
Abstract
Objective: To test the hypothesis that 'metabolites released during fatiguing muscle contractions excite group III-IV muscle nociceptive afferents, inhibiting homonymous motoneurones via Renshaw cells,' by recording changes in recurrent inhibition of soleus motoneurones when high-threshold, small-diameter afferents (group III-IV fibres) from the same muscle were tonically activated.
Methods: Experiments were performed in 7 healthy subjects at rest and during weak isometric voluntary contraction of the soleus muscle. Muscle nociceptive afferents were activated by local standardized injection of levo-ascorbic acid. Renshaw cells were orthodromically activated by a conditioning H reflex and the resulting recurrent inhibition of the soleus motoneurones was assessed by a subsequent test H reflex. An additional H reflex of the same size as the test reflex was used to assess motoneurone excitability.
Results: At rest, muscle nociceptive stimulation produced transient facilitation of both test H and reference H reflexes. Under weak voluntary contraction, muscle nociceptive stimulation produced long-lasting extra-inhibition and extra-facilitation of the test reflex and reference reflex respectively, the time course of which closely resembled that of the subjective muscle pain curve.
Conclusions: Discharge of putative group III-IV muscle afferents facilitated homonymous recurrent inhibition. The filtering property of recurrent inhibition may contribute to limit motoneurone activity during muscle pain and/or adapt motoneurone firing rate to the modified contractile properties of motor units as muscle fatigue developed.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
