Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Jan 30;535(1-3):39-43.
doi: 10.1016/s0014-5793(02)03852-8.

Comparison of proto-oncogenic and mutant forms of the transmembrane region of the Neu receptor in TFE

Affiliations
Free article
Comparative Study

Comparison of proto-oncogenic and mutant forms of the transmembrane region of the Neu receptor in TFE

R Scott Houliston et al. FEBS Lett. .
Free article

Abstract

A single mutation within the transmembrane region of the Neu receptor (Val664-->Glu) is known to enhance tyrosine kinase activity, by promoting receptor dimerization. In order to gain insight into potential structural changes that arise as a result of the mutation, peptides corresponding to the complete transmembrane domain of proto-oncogenic and mutant forms of Neu have been studied by 1H nuclear magnetic resonance in the solvent trifluoroethanol (TFE). The chemical shifts are similar for both forms of the peptide, with the exception of amide residues close to the mutation site. Both peptides adopt a helical conformation, with a distinct bend one turn downstream of the mutation site. This deformation gives rise to several nuclear Overhauser effects, the majority of which were detected in both peptides, that are atypical for a straight canonical alpha-helix. Our data in this solvent do not support a conformational change in the transmembrane domain of monomeric Neu as a result of the mutation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicates that proto-oncogenic Neu peptides have a higher propensity to oligomerize in the solvent TFE than the Glu664 oncogenic form.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources