Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr 18;278(16):13757-64.
doi: 10.1074/jbc.M212530200. Epub 2003 Jan 31.

Maize C4 NADP-malic enzyme. Expression in Escherichia coli and characterization of site-directed mutants at the putative nucleoside-binding sites

Affiliations
Free article

Maize C4 NADP-malic enzyme. Expression in Escherichia coli and characterization of site-directed mutants at the putative nucleoside-binding sites

Enrique Detarsio et al. J Biol Chem. .
Free article

Abstract

Malic enzymes catalyze the oxidative decarboxylation of l-malate to yield pyruvate, CO(2), and NAD(P)H in the presence of a bivalent metal ion. In plants, different isoforms of the NADP-malic enzyme (NADP-ME) are involved in a wide range of metabolic pathways. The C(4)-specific NADP-ME has evolved from C(3)-type malic enzymes to represent a unique and specialized form of NADP-ME as indicated by its particular kinetic and regulatory properties. In the present study, the mature C(4)-specific NADP-ME of maize was expressed in Escherichia coli. The recombinant enzyme has essentially the same physicochemical properties and K(m) for the substrates as those of the naturally occurring NADP-ME previously characterized. However, the k(cat) was almost 7-fold higher, which may suggest that the previously purified enzyme from maize leaves was partially inactive. The recombinant NADP-ME also has a very low intrinsic NAD-dependent activity. Five mutants of NADP-ME at the postulated putative NADP-binding site(s) (Gsite5V, Gsite2V, A392G, A387G, and R237L) were constructed by site-directed mutagenesis and purified to homogeneity. The participation of these residues in substrate binding and/or the catalytic reaction was inferred by kinetic measurements and circular dichroism and intrinsic fluorescence spectra. The results obtained were compared with a predicted three-dimensional model of maize C(4) NADP-ME based on crystallographic studies of related animal NAD(P)-MEs. The data presented here represent the first prokaryotic expression of a plant NADP-ME and reveals valuable insight regarding the participation of the mutated amino acids in the binding of substrates and/or catalysis.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources