Molecular characteristics of spontaneous deletions in the hyperthermophilic archaeon Sulfolobus acidocaldarius
- PMID: 12562797
- PMCID: PMC142876
- DOI: 10.1128/JB.185.4.1266-1272.2003
Molecular characteristics of spontaneous deletions in the hyperthermophilic archaeon Sulfolobus acidocaldarius
Abstract
Prokaryotic genomes acquire and eliminate blocks of DNA sequence by lateral gene transfer and spontaneous deletion, respectively. The basic parameters of spontaneous deletion, which are expected to influence the course of genome evolution, have not been determined for any hyperthermophilic archaeon. We therefore screened a number of independent pyrimidine auxotrophs of Sulfolobus acidocaldarius for deletions and sequenced those detected. Deletions accounted for only 0.4% of spontaneous pyrE mutations, corresponding to a frequency of about 10(-8) per cell. Nucleotide sequence analysis of five independent deletions showed no significant association of the endpoints with short direct repeats, despite the fact that several such repeats occur within the pyrE gene and that duplication mutations in pyrE reverted at high frequencies. Endpoints of the spontaneous deletions did not coincide with short inverted repeats or potential stem-loop structures. No consensus sequence common to all the deletions could be identified, although two deletions showed the potential of being stabilized by octanucleotide sequences elsewhere in pyrE, and another pair of deletions shared an octanucleotide at their 3' ends. The unusually low frequency and low sequence dependence of spontaneous deletions in the S. acidocaldarius pyrE gene compared to other genetic systems could not be explained in terms of possible constraints imposed by the 5-fluoroorotate selection.
Figures


Similar articles
-
Isolation and characterization of pyrimidine auxotrophs, and molecular cloning of the pyrE gene from the hyperthermophilic archaeon Pyrococcus abyssi.Mol Gen Genet. 1999 Sep;262(2):378-81. doi: 10.1007/s004380051096. Mol Gen Genet. 1999. PMID: 10517335
-
How a Genetically Stable Extremophile Evolves: Modes of Genome Diversification in the Archaeon Sulfolobus acidocaldarius.J Bacteriol. 2017 Aug 8;199(17):e00177-17. doi: 10.1128/JB.00177-17. Print 2017 Sep 1. J Bacteriol. 2017. PMID: 28630130 Free PMC article.
-
High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements.J Bacteriol. 2000 May;182(9):2574-81. doi: 10.1128/JB.182.9.2574-2581.2000. J Bacteriol. 2000. PMID: 10762261 Free PMC article.
-
Evolution: constantly avoiding mutation.Curr Biol. 2001 Nov 13;11(22):R929-31. doi: 10.1016/s0960-9822(01)00557-7. Curr Biol. 2001. PMID: 11719241 Review.
-
Homologous recombination in Sulfolobus acidocaldarius: genetic assays and functional properties.Biochem Soc Trans. 2009 Feb;37(Pt 1):88-91. doi: 10.1042/BST0370088. Biochem Soc Trans. 2009. PMID: 19143608 Review.
Cited by
-
The archaeal Ced system imports DNA.Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):2496-501. doi: 10.1073/pnas.1513740113. Epub 2016 Feb 16. Proc Natl Acad Sci U S A. 2016. PMID: 26884154 Free PMC article.
-
Disruption of the gene encoding restriction endonuclease SuaI and development of a host-vector system for the thermoacidophilic archaeon Sulfolobus acidocaldarius.Extremophiles. 2016 Mar;20(2):139-48. doi: 10.1007/s00792-016-0807-0. Epub 2016 Jan 20. Extremophiles. 2016. PMID: 26791382
-
DNA Processing Proteins Involved in the UV-Induced Stress Response of Sulfolobales.J Bacteriol. 2015 Sep;197(18):2941-51. doi: 10.1128/JB.00344-15. Epub 2015 Jul 6. J Bacteriol. 2015. PMID: 26148716 Free PMC article.
-
Conjugational genetic exchange in the hyperthermophilic archaeon Sulfolobus acidocaldarius: intragenic recombination with minimal dependence on marker separation.J Bacteriol. 2005 Jan;187(2):805-9. doi: 10.1128/JB.187.2.805-809.2005. J Bacteriol. 2005. PMID: 15629955 Free PMC article.
-
A conserved hexanucleotide motif is important in UV-inducible promoters in Sulfolobus acidocaldarius.Microbiology (Reading). 2017 May;163(5):778-788. doi: 10.1099/mic.0.000455. Epub 2017 May 3. Microbiology (Reading). 2017. PMID: 28463103 Free PMC article.
References
-
- Andersson, J. O., and S. G. E. Andersson. 1999. Genome degradation is an ongoing process in Rickettsia. Mol. Biol. Evol. 16:1178-1191. - PubMed
-
- Buhler, C., J. H. G. Lebbink, C. Bocs, R. Ladenstein, and P. Forterre. 2001. DNA topoisomerase VI generates ATP-dependent double-strand breaks with two-nucleotide overhangs. J. Biol. Chem. 276:37215-37222. - PubMed
-
- Bullock, P., J. J. Champoux, and M. Botchan. 1985. Association of crossover points with topoisomerase I cleavage sites: a model for nonhomologous recombination. Science 230:954-958. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources