Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May;44(5):943-52.
doi: 10.1194/jlr.M200482-JLR200. Epub 2003 Feb 1.

Inhibition of both the apical sodium-dependent bile acid transporter and HMG-CoA reductase markedly enhances the clearance of LDL apoB

Affiliations
Free article

Inhibition of both the apical sodium-dependent bile acid transporter and HMG-CoA reductase markedly enhances the clearance of LDL apoB

Dawn E Telford et al. J Lipid Res. 2003 May.
Free article

Abstract

Discovery of the ileal apical sodium-dependent bile acid transporter (ASBT) permitted development of specific inhibitors of bile acid reabsorption, potentially a new class of cholesterol-lowering agents. In the present study, we tested the hypothesis that combining the novel ASBT inhibitor, SC-435, with the HMG-CoA reductase inhibitor, atorvastatin, would potentiate reductions in LDL cholesterol (LDL-C) and LDL apolipoprotein B (apoB). ApoB kinetic studies were performed in miniature pigs fed a typical human diet and treated with the combination of SC-435 (5 mg/kg/day) plus atorvastatin (3 mg/kg/day) (SC-435+A) or a placebo. SC-435+A decreased plasma total cholesterol by 23% and LDL-C by 40%. Multicompartmental analysis (SAAM II) demonstrated that LDL apoB significantly decreased by 35% due primarily to a 45% increase in the LDL apoB fractional catabolic rate (FCR). SC-435+A significantly decreased hepatic concentrations of free cholesterol and cholesteryl ester, and increased hepatic LDL receptor mRNA consequent to increased cholesterol 7alpha-hydroxylase expression and activity. In comparison, SC-435 (10 mg/kg/day) monotherapy decreased LDL apoB by 10% due entirely to an 18% increase in LDL apoB FCR, whereas atorvastatin monotherapy (3 mg/kg/day) decreased LDL apoB by 30% due primarily to a 22% reduction in LDL apoB production. We conclude that SC-435+A potentiates the reduction of LDL-C and LDL apoB due to complementary mechanisms of action.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources