Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Mar;44(3):441-9.
doi: 10.1194/jlr.R200020-JLR200. Epub 2003 Jan 16.

New perspectives on the regulation of intermembrane glycerophospholipid traffic

Affiliations
Free article
Review

New perspectives on the regulation of intermembrane glycerophospholipid traffic

Dennis R Voelker. J Lipid Res. 2003 Mar.
Free article

Abstract

In eukaryotes, phosphatidylserine (PtdSer) can serve as a precursor of phosphatidylethanolamine (PtdEtn) and phosphatidylcholine (PtdCho), which are the major cellular phospholipids. PtdSer synthesis originates in the endoplasmic reticulum (ER) and its subdomain named the mitochondria-associated membrane (MAM). PtdSer is transported to the mitochondria in mammalian cells and yeast, and decarboxylated by PtdSer decarboxylase 1 (Psd1p) to form PtdEtn. A second decarboxylase, Psd2p, is also found in yeast in the Golgi-vacuole. PtdEtn produced by Psd1p and Psd2p can be transported to the ER, where it is methylated to form PtdCho. Organelle-specific metabolism of the aminoglycerophospholipids is a powerful tool for experimentally following lipid traffic that is now enabling identification of new proteins involved in the regulation of this process. Genetic and biochemical experiments demonstrate that transport of PtdSer between the MAM and mitochondria is regulated by protein ubiquitination, which affects events at both membranes. Similar analyses of PtdSer transport to the locus of Psd2p now indicate that a membrane-bound phosphatidylinositol transfer protein and the C2 domain of Psd2p are both required on the acceptor membrane for efficient transport of PtdSer. Collectively, these recent findings indicate that novel multiprotein assemblies on both donor and acceptor membranes participate in interorganelle phospholipid transport.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources