Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb 7;301(2):392-8.
doi: 10.1016/s0006-291x(02)03051-6.

Nedd8-modification of Cul1 is promoted by Roc1 as a Nedd8-E3 ligase and regulates its stability

Affiliations

Nedd8-modification of Cul1 is promoted by Roc1 as a Nedd8-E3 ligase and regulates its stability

Mitsuru Morimoto et al. Biochem Biophys Res Commun. .

Abstract

SCF is a ubiquitin ligase and is composed of Skp1, Cul1, F-box protein, and Roc1. The catalytic site of the SCF is the Cul1/Roc1 complex and RING-finger protein Roc1. It was shown earlier that when Cul1 was co-expressed with Roc1 in Sf-9 cells in a baculovirus protein expression system, Cul1 was highly neddylated in the cell, suggesting that Roc1 may function as a Nedd8-E3 ligase. However, there is no direct evidence that Roc1 is a Nedd8-E3 in an in vitro enzyme system. Here we have shown that Roc1 binds to Ubc12, E2 for Nedd8, but not to Ubc9, E2 for SUMO-1 and Roc1 RING-finger mutant, H77A, did not bind to Ubc12. In in vitro neddylation system using purified Cul1/Roc1 complex expressed in bacteria, Roc1 promotes neddylation of Cul1. These results demonstrate that Roc1 functions as a Nedd8-E3 ligase toward Cul1. Furthermore, Roc1 and Cul1 were ubiquitinylated in a manner dependent on the neddylation of Cul1 in vitro. In addition, Cul1 was degraded through the ubiquitin-proteasome pathway, and a non-neddylated mutant Cul1, K720R, was more stable than wild-type in intact cells. Thus, neddylation of Cul1 might regulate SCF function negatively via degradation of Cul1/Roc1 complex.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources