Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb 7;301(2):411-6.
doi: 10.1016/s0006-291x(02)03063-2.

Methylene blue photosensitized oxidation of hypotaurine in the presence of azide generates reactive nitrogen species: formation of nitrotyrosine

Affiliations

Methylene blue photosensitized oxidation of hypotaurine in the presence of azide generates reactive nitrogen species: formation of nitrotyrosine

Laura Pecci et al. Biochem Biophys Res Commun. .

Abstract

In our previous study on the hypotaurine (HTAU) oxidation by methylene blue (MB) photochemically generated singlet oxygen (1O2) we found that azide, usually used as 1O2 quencher, produced, instead, an evident enhancing effect on the oxidation rate [L. Pecci, M. Costa, G. Montefoschi, A. Antonucci, D. Cavallini, Biochem. Biophys. Res. Commun. 254 (1999) 661-665]. We show here that this effect is strongly dependent on pH, with a maximum at approximately pH 5.7. When the MB photochemical system containing HTAU and azide was performed in the presence of tyrosine, 3-nitrotyrosine was produced with maximum yield at pH 5.7, suggesting that azide, by the combined action of HTAU and singlet oxygen, generates nitrogen species which contribute to tyrosine nitration. In addition to HTAU, cysteine sulfinic acid, and sulfite were found to induce the formation of 3-nitrotyrosine. No detectable tyrosine nitration was observed using taurine, the oxidation product of HTAU, or thiol compounds such as cysteine and glutathione. It is shown that during the MB photooxidation of HTAU in the presence of azide, nitrite, and nitrate are produced. Evidences are presented, indicating that nitrite represents the nitrogen species involved in the production of 3-nitrotyrosine. A possible mechanism accounting for the enhancing effect of azide on the photochemical oxidation of HTAU and the production of nitrogen species is proposed.

PubMed Disclaimer

LinkOut - more resources