Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr 18;278(16):14237-48.
doi: 10.1074/jbc.M208372200. Epub 2003 Feb 3.

Diketopyridylryanodine has three concentration-dependent effects on the cardiac calcium-release channel/ryanodine receptor

Affiliations
Free article

Diketopyridylryanodine has three concentration-dependent effects on the cardiac calcium-release channel/ryanodine receptor

Keshore R Bidasee et al. J Biol Chem. .
Free article

Abstract

By interacting with more than one site, ryanoids induce multiple effects on calcium-release channels. To date, the kinetics of interaction of only one of these sites has been characterized. Using C(4),C(12)-diketopyridylryanodine in both [(3)H]ryanodine binding and single channel experiments we characterized another site on the cardiac ryanodine receptor (RyR2) with which ryanoids interact. Competitive binding of this ryanoid to RyR2 implied a minimal two-site binding model. At the single channel level, C(4),C(12)-diketopyridylryanodine induced three distinct effects. At nanomolar concentrations, it increased channel open probability severalfold without inducing a subconductance. This effect was independent of membrane holding potential. As for other ryanoids, low micromolar concentrations of C(4),C(12)-diketopyridylryanodine readily induced a subconductance state. The major subconductance had a current amplitude of 52% of fully open, it was reversible, and its time to induction and duration were voltage- and concentration-dependent, affording Hill slopes of >2. At higher micromolar concentrations C(4),C(12)-diketopyridylryanodine induced long lasting, yet reversible shut states. Using a pharmacological strategy we have discerned an additional ryanoid-binding site on RyR2 that triggers an increase in channel activity. This site likely resides outside the strict confines of the transmembrane conducting pathway.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources