Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Dec;59(12):2033-43.
doi: 10.1007/s000180200003.

The clostridial mobilisable transposons

Affiliations
Review

The clostridial mobilisable transposons

V Adams et al. Cell Mol Life Sci. 2002 Dec.

Abstract

Mobilisable transposons are transposable genetic elements that also encode mobilisation functions but are not in themselves conjugative. They rely on coresident conjugative elements to facilitate their transfer to recipient cells. Clostridial mobilisable transposons include Tn4451 and Tn4452 from Clostridium perfringens, and Tn4453a and Tn4453b from Clostridium difficile, all of which are closely related, and Tn5398 from C. difficile. The Tn4451 group of elements encodes resistance to chloramphenicol and is unusual in that transposition is dependent upon a large resolvase protein rather than a more conventional transposase or integrase. This group of elements also encodes the mobilisation protein TnpZ that, by acting at the RS(A) or oriT site located on the transposon, and in the presence of a coresident conjugative element, promotes the movement of the nonreplicating circular intermediate and of plasmids on which the transposon resides. The erythromycin resistance element Tn5398 is unique in that it encodes no readily identifiable transposition or mobilisation proteins. However, the element is still capable of intraspecific transfer between C. difficile isolates, by an unknown mechanism. The detailed analysis of these mobilisable clostridial elements provides evidence that the evolution and dissemination of antibiotic resistance genes is a complex process that may involve the interaction of genetic elements with very different properties.

PubMed Disclaimer

Publication types

LinkOut - more resources