Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003;3(3):249-82.
doi: 10.2174/1568026033452537.

Fluoroquinolones: action and resistance

Affiliations
Review

Fluoroquinolones: action and resistance

Karl Drlica et al. Curr Top Med Chem. 2003.

Abstract

Fluoroquinolones trap gyrase and topoisomerase IV on DNA as ternary complexes that block the movement of replication forks and transcription complexes. Studies with resistant mutants indicate that during complex formation quinolones bind to a surface alpha-helix of the GyrA and ParC proteins. Lethal action is a distinct event that is proposed to arise from release of DNA breaks from the ternary complexes. Many bacterial pathogens are exhibiting resistance due to alterations in drug permeability, drug efflux, gyrase-protecting proteins, and target topoisomerases. When selection of resistant mutants is described in terms of fluoroquinolone concentration, a threshold (mutant prevention concentration, MPC) can be defined for restricting the development of resistance. MPC varies among fluoroquinolones and pathogens; when combined with pharmacokinetics, MPC can be used to identify compounds least likely to enrich mutant subpopulations. Use of suboptimal doses and compounds erodes the efficacy of the class as a whole because resistance to one quinolone reduces susceptibility to others and/or increases the frequency at which resistance develops. When using fluoroquinolones in combination therapy, the development of resistance may be minimized by optimizing regimens for pharmacokinetic overlap.

PubMed Disclaimer

Publication types

MeSH terms