Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003;3(6):687-703.
doi: 10.2174/1568026033452393.

Micro- and nanotechnologies for studying cellular function

Affiliations
Review

Micro- and nanotechnologies for studying cellular function

Jeongsup Shim et al. Curr Top Med Chem. 2003.

Abstract

The study of complex biological systems requires methods to perturb the system in complex yet controlled ways to elucidate mechanisms and dynamic interactions, and to recreate in vivo conditions in flexible in vitro set-ups. This paper reviews recent advances in the use of micro- and nanotechnologies in the study of complex biological systems and the advantages they provide in these two areas. Particularly useful for controlling the chemical and mechanical microenvironments of cells is a set of techniques called soft lithography, whereby elastomeric materials are used to transfer and generate micro- and nanoscale patterns. Examples of some of the capabilities of soft lithography include the use of elastomeric stamps to generate micropatterns of protein and the use of elastomeric channels to localize chemicals with subcellular spatial resolutions. These types of biological micro- and nanotechnologies combined with mathematical modeling will propel our understandings of cellular and subcellular physiology to new heights.

PubMed Disclaimer

Publication types

LinkOut - more resources