Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May 15;372(Pt 1):151-61.
doi: 10.1042/BJ20021621.

Calcium and domain interactions contribute to the thermostability of domains of the multimodular cellobiohydrolase, CbhA, a subunit of the Clostridium thermocellum cellulosome

Affiliations

Calcium and domain interactions contribute to the thermostability of domains of the multimodular cellobiohydrolase, CbhA, a subunit of the Clostridium thermocellum cellulosome

Irina A Kataeva et al. Biochem J. .

Abstract

Each of three internal domains of multi-modular cellobiohydrolase CbhA from Clostridium thermocellum, X1(1), X1(2) (previously designated as fibronectin type 3-like modules, Fn3(1) and Fn3(2)) and family 3 carbohydrate-binding module (CBM3) binds 1 mol of Ca(2+). Structures and thermal stabilities of X1(1), X1(2), CBM3, X1(1)X1(2), and X1(1)X1(2)-CBM3 containing Ca(2+) (holo-proteins) and without Ca(2+) (apo-proteins) have been studied using CD spectroscopy. All domains are beta-proteins with irregular far-UV CD spectra due to the aromatic side chain contributions. The positive signal at 294 nm in the near-UV CD spectrum of X1(1) lacking a tryptophan residue might be attributed to the presence of aromatic clusters. Thermal denaturation of all proteins is reversible and results in the total loss of tertiary structure and preservation of significant amount of ordered secondary structure. Removal of Ca(2+) destabilizes polypeptides in a different way and to a different extent. It decreases the melting temperature ( T (m)) (by 20 degrees C) and co-operativity of thermal transition of X1(1), increases the number of transitions and lowers the co-operativity of unfolding of CBM3, and slightly decreases T (m)s (2.4-4.2 degrees C) of X1(2), X1(1)X1(2), and X1(1)X1(2)-CBM3. Transitions of X1(1)X1(2) and X1(1)X1(2)-CBM3 follow a two-state model regardless of the presence of Ca(2+). X1(1) is strongly stabilized in the apo-X1(1)X1(2) and apo-X1(1)X1(2)-CBM3 as they display T (m)s similar to those of individual and combined holo-modules. Observed CD spectra of X1(1)X1(2) and X1(1)X1(2)-CBM3 differ from those calculated as the simple weighted sum of individual modules. These differences are more prominent in spectra of apo-proteins. The results indicate the presence of inter-domain interactions in CbhA. Holo-modules, i.e. containing Ca(2+), behave essentially independently, but in the absence of Ca(2+) domain interactions are more important for the conformation of the polypeptides.

PubMed Disclaimer

References

    1. Arch Biochem Biophys. 2000 Jul 15;379(2):237-44 - PubMed
    1. J Bacteriol. 1998 Jun;180(12):3091-9 - PubMed
    1. Protein Eng. 2001 Mar;14(3):167-72 - PubMed
    1. Biochemistry. 2001 May 22;40(20):6076-84 - PubMed
    1. Biochemistry. 1998 Sep 15;37(37):12772-81 - PubMed

Publication types