Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar;94(3):1204-12.
doi: 10.1152/japplphysiol.00558.2002. Epub 2002 Nov 15.

Central CO2 chemoreception in developing bullfrogs: anomalous response to acetazolamide

Affiliations
Free article

Central CO2 chemoreception in developing bullfrogs: anomalous response to acetazolamide

Barbara E Taylor et al. J Appl Physiol (1985). 2003 Mar.
Free article

Abstract

Central CO(2) chemoreception and the role of carbonic anhydrase were assessed in brain stems from Rana catesbeiana tadpoles and frogs. Buccal and lung rhythms were recorded from cranial nerve VII and spinal nerve II during normocapnia and hypercapnia before and after treatment with 25 microM acetazolamide. The lung response to acetazolamide mimicked the hypercapnic response in early-stage and midstage metamorphic tadpoles and frogs. In late-stage tadpoles, acetazolamide actually inhibited hypercapnic responses. Acetazolamide and hypercapnia decreased the buccal frequency but had no effect on the buccal duty cycle. Carbonic anhydrase activity was present in the brain stem in every developmental stage. Thus more frequent lung ventilation and concomitantly less frequent buccal ventilation comprised the hypercapnic response, but the response to acetazolamide was not consistent during metamorphosis. Therefore, acetazolamide is not a useful tool for central CO(2) chemoreceptor studies in this species. The reversal of the effect of acetazolamide in late-stage metamorphosis may reflect reorganization of central chemosensory processes during the final transition from aquatic to aerial respiration.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources