Beta-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway
- PMID: 12574140
- DOI: 10.1161/01.res.0000054624.03539.b4
Beta-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway
Abstract
Stimulation of beta-adrenergic receptors (betaARs) causes apoptosis in adult rat ventricular myocytes (ARVMs). The role of reactive oxygen species (ROS) in mediating betaAR-stimulated apoptosis is not known. Stimulation of betaARs with norepinephrine (10 micromol/L) in the presence of prazosin (100 nmol/L) for 24 hours increased the number of apoptotic myocytes as determined by TUNEL staining by 3.6- fold. The superoxide dismutase/catalase mimetics Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (MnTMPyP; 10 micromol/L) and Euk-134 decreased betaAR-stimulated apoptosis by 89+/-6% and 76+/-10%, respectively. Infection with an adenovirus expressing catalase decreased betaAR-stimulated apoptosis by 82+/-15%. The mitochondrial permeability transition pore inhibitor bongkrekic acid (50 micromol/L) decreased betaAR-stimulated apoptosis by 76+/-8%, and the caspase inhibitor zVAD-fmk (25 micromol/L) decreased betaAR-stimulated apoptosis by 62+/-11%. betaAR-stimulated cytochrome c release was inhibited by MnTMPyP. betaAR stimulation caused c-Jun NH2-terminal kinase (JNK) activation, which was abolished by MnTMPyP. Transfection with an adenovirus expressing dominant-negative JNK inhibited betaAR-stimulated apoptosis by 81+/-12%, and the JNK inhibitor SP600125 inhibited both betaAR-stimulated apoptosis and cytochrome c release. Thus, betaAR-stimulated apoptosis in ARVMs involves ROS/JNK-dependent activation of the mitochondrial death pathway.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
