Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb 7;92(2):243-51.
doi: 10.1161/01.res.0000053184.94618.97.

Load-induced transcriptional activation of c-jun in rat myocardium: regulation by myocyte enhancer factor 2

Affiliations
Free article

Load-induced transcriptional activation of c-jun in rat myocardium: regulation by myocyte enhancer factor 2

Wilson Nadruz Jr et al. Circ Res. .
Free article

Abstract

The increased expression of immediate-early genes is a key feature of the myocardial response to hypertrophic stimuli. In this study, we investigated whether pressure overload or phenylephrine treatment stimulated myocyte enhancer factor 2 (MEF2)-dependent transcriptional activation of c-jun in cardiac myocytes. Western blotting and immunohistochemical analysis of rat myocardium demonstrated that p70(MEF2) is highly expressed in the rat heart and is predominantly located at the nuclei of cardiac myocytes. Electrophoretic mobility shift assays of myocardial nuclear extracts revealed a consistent DNA binding activation of MEF2 after 1 and 2 hours of pressure overload. We further showed that pressure overload induced a progressive nuclear translocation and activation of extracellular signal-regulated kinase 5 (ERK5). Coimmunoprecipitation and in vitro kinase assays indicated that the activation of ERK5 was paralleled by increased association of ERK5/p70(MEF2) and by enhanced ability of ERK5 to phosphorylate p70(MEF2). Experiments with in vivo transfection of the left ventricle with the c-jun promoter reporter gene showed that pressure overload induced a consistent increase of c-jun transcriptional activity in the rat myocardium. Rendering the MEF2 site of the c-jun plasmid inactive by mutation abolished the load-induced activation of the c-jun promoter reporter gene. Mutation of the MEF2 site also abolished the phenylephrine-induced c-jun promoter activation in neonatal rat ventricular myocytes. In addition, we demonstrated that neonatal rat ventricular myocyte transfection with ERK5-antisense oligodeoxynucleotide inhibited the phenylephrine-induced c-jun promoter activation. These findings identify MEF2 as a potential regulator of c-jun transactivation and suggest that ERK5 might be an important mediator of MEF2 and c-jun promoter activation in response to hypertrophic stimuli in cardiac myocytes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources