Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb 18;42(6):1696-706.
doi: 10.1021/bi020634d.

Comprehensive model for allosteric regulation of mammalian ribonucleotide reductase: refinements and consequences

Affiliations

Comprehensive model for allosteric regulation of mammalian ribonucleotide reductase: refinements and consequences

Ossama B Kashlan et al. Biochemistry. .

Abstract

Reduction of NDPs by murine ribonucleotide reductase (mRR) requires catalytic (mR1) and free radical-containing (mR2) subunits and is regulated by nucleoside triphosphate allosteric effectors. Here we present the results of several studies that refine the recently presented comprehensive model for the allosteric control of mRR enzymatic activity [Kashlan, O. B., et al. (2002) Biochemistry 41, 462-474], in which nucleotide binding to the specificity site (s-site) drives formation of an active R1(2)R2(2) dimer, ATP or dATP binding to the adenine site (a-site) drives formation of a tetramer, mR1(4a), which isomerizes to an inactive form, mR1(4b), and ATP binding to the hexamerization site (h-site) drives formation of an active R1(6)R2(6) hexamer. Analysis of the a-site D57N variant of mR1, which differs from wild-type mR1 (wt-mR1) in that its RR activity is activated by both ATP and dATP, demonstrates that dATP activation of the D57N variant RR arises from a blockage in the formation of mR1(4b) from mR1(4a), and provides strong evidence that mR1(4a) forms active complexes with mR2(2). We further demonstrate that (a) differences in the effects of ATP versus dATP binding to the a-site of wt-mR1 provide specific mechanisms by which the dATP/ATP ratio in mammalian cells could modulate in vivo RR enzymatic activity, (b) the comprehensive model is valid over a range of Mg(2+) concentrations that include in vivo concentrations, and (c) equilibrium constants derived for the comprehensive model can be used to simulate the distribution of R1 among dimer, tetramer, and hexamer forms in vivo. Such simulations indicate that mR1(6) predominates over mR1(2) in the cytoplasm of normal mammalian cells, where the great majority of RR activity is located, but that mR1(2) may be important for nuclear RR activity and for RR activity in cells in which the level of ATP is depleted.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources