Hydroxyapatite composite resin cement augmentation of pedicle screw fixation
- PMID: 12579026
- DOI: 10.1097/01.blo.0000030166.56585.66
Hydroxyapatite composite resin cement augmentation of pedicle screw fixation
Abstract
Pedicle screw stability is poor in osteopenic vertebrae attributable, in part, to low screw-bone interface strength. The current authors examined cement augmentation using a low curing temperature hydroxyapatite and bis-phenol-A glycidol methacrylate-based composite resin. This cement may stiffen the screw-bone interface and reduce the harmful effects associated with polymethylmethacrylate regarding temperature and toxic monomer. Thirty-five lumbar vertebrae from human cadavers were instrumented with pedicle screws, with one pedicle previously injected with cement and the other as the control. Caudocephalad toggling of +/- 1 mm for 1600 cycles was applied to the pedicle screws, and the resulting forces supported by the implant-bone interface were captured by a load cell. A curve was constructed from the peak caudal load for each cycle and three mechanical measures parameterized this curve: (1) initial load; (2) rate of load decay during the first 400 cycles; and (3) final load. The initial load increased by 16% as a result of cement augmentation, the final load increased by 65%, and the rate of load decay decreased by 59%. Cement augmentation of pedicle screws increased the stiffness and stability of the screw-bone interface.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous