Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb 19;125(7):1778-87.
doi: 10.1021/ja0287377.

ZP4, an improved neuronal Zn2+ sensor of the Zinpyr family

Affiliations

ZP4, an improved neuronal Zn2+ sensor of the Zinpyr family

Shawn C Burdette et al. J Am Chem Soc. .

Abstract

A second-generation fluorescent sensor for Zn(2+) from the Zinpyr family, ZP4, has been synthesized and characterized. ZP4 (Zinpyr-4, 9-(o-carboxyphenyl)-2-chloro-5-[2-(bis(2-pyridylmethyl)aminomethyl)-N-methylaniline]-6-hydroxy-3-xanthanone) is prepared via a convergent synthetic strategy developed from previous studies with these compounds. ZP4, like its predecessors, has excitation and emission wavelengths in the visible range ( approximately 500 nm), a dissociation constant (K(d)) for Zn(2+) of less than 1 nM and a high quantum yields (Phi = approximately 0.4), making it well suited for biological applications. A 5-fold fluorescent enhancement is observed under simulated physiological conditions corresponding to the binding of the Zn(2+) cation to the sensor, which inhibits a photoinduced electron transfer (PET) quenching pathway. The metal-binding stereochemistry of ZP4 was evaluated through the synthesis and X-ray structural characterization of [M(BPAMP)(H(2)O)(n)](+) complexes, where BPAMP is [2-(bis(2-pyridylmethyl)aminomethyl)-N-methylaniline]-phenol and M = Mn(2+), Zn(2+) (n = 1) or Cu(2+) (n = 0).

PubMed Disclaimer

Publication types

LinkOut - more resources