Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 May;104(6-7):908-915.
doi: 10.1007/s00122-001-0797-9. Epub 2002 Mar 27.

Comparison between genetic and physical maps in Zea mays L. of molecular markers linked to resistance against Diatraea spp

Affiliations

Comparison between genetic and physical maps in Zea mays L. of molecular markers linked to resistance against Diatraea spp

T. Sadder et al. Theor Appl Genet. 2002 May.

Abstract

In the pachytene stage, chromosomes are maximally extended and can easily be distinguished. Therefore, by applying fluorescence in situ hybridization (FISH) to pachytene chromosomes, it is possible to generate a high-resolution physical map of chromosome 9 in maize. Molecular markers ( umc105a on the short arm of chromosome 9, csu145a on the long arm) were used that flank quantitative trait loci (QTL) for sugarcane borer (SCB) and southwestern corn borer (SWCB) resistance. As reference markers, a centromere-specific probe (CentC) and a knob-specific probe (pZm4-21) were utilized. Two fluorescent dyes with four probes were used to physically position these markers. Signals of repetitive DNA sequences in cosmid probes were suppressed by chromosome in situ suppression (CISS) hybridization. FISH signals were strong and reproducible for all probes. We measured the distances in micrometers for four subchromosomal regions and estimated the corresponding number of base pairs. The physical locations of the markers were compared on mitotic metaphase and pachytene chromosomes to the genetic map of chromosome 9. Genetic analysis positioned the two markers for SCB resistance in a central interval representing approximately 33.7% of the genetic length. However, the physical distance between these probes was determined to encompass about 70% of the physical length of chromosome 9. The two markers were located at distal positions on opposite arms of chromosome 9. Physical maps provide valuable information for gene isolation and understanding recombination.

PubMed Disclaimer

LinkOut - more resources